Evaluation of Quinazoline Analogues as Glucocerebrosidase Inhibitors with Chaperone Activity

Juan J. Marugan,^{*,†} Wei Zheng,[†] Omid Motabar,^{†,‡} Noel Southall,[†] Ehud Goldin,[‡] Wendy Westbroek,[‡] Barbara K. Stubblefield,[‡] Ellen Sidransky,[‡] Ronald A. Aungst,[§] Wendy A. Lea,[†] Anton Simeonov,[†] William Leister,[†] and Christopher P. Austin[†]

[†]NIH Chemical Genomic Center, National Human Genome Research Institute, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland, United States, [‡]Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, United States, and [§]Albany Molecular Research Institute, 30 Corporate Circle, Albany, New York 12203, United States

Received July 15, 2010

Gaucher disease is a lysosomal storage disorder (LSD) caused by deficiency in the enzyme glucocerebrosidase (GC). Small molecule chaperones of protein folding and translocation have been proposed as a promising therapeutic approach to this LSD. Most small molecule chaperones described in the literature contain an iminosugar scaffold. Here we present the discovery and evaluation of a new series of GC inhibitors with a quinazoline core. We demonstrate that this series can improve the translocation of GC to the lysosome in patient-derived cells. To optimize this chemical series, systematic synthetic modifications were performed and the SAR was evaluated and compared using three different readouts of compound activity: enzymatic inhibition, enzyme thermostabilization, and lysosomal translocation of GC.

1. Introduction

Gaucher disease, the most common of the lipidoses, is an autosomal recessive disorder resulting from mutations in the enzyme glucocerebrosidase (EC 3.2.1.45).¹ The function of glucocerebrosidase (GC^{*a*}) is to hydrolyze β -glycosidic linkages of glucocerebrosides, also called glucosylceramides, in the lysosome.² These glycosphingolipids are cell membrane components that maintain the stability of the lipid bilayer, function as cellular recognition elements, and play an important role in cellular adherence.³

There are more than 200 recognized mutations in the glucocerebrosidase gene.⁴ Although many GC mutants are still functional,⁵ many affect translocation to the lysosome and results in protein premature degradation in the ER. The inability of GC protein to reach the lysosome produces accumulation of glucosylceramides in the lysosome, causing tissue-specific lysosomal enlargement characteristic of the disease. Currently, the major FDA approved medication for the treatment of Gaucher disease is the infusion of recombinant human enzyme as enzymatic replacement therapy (ERT). Although ERT successfully reverses some of the disease manifestation, the limited tissue distribution of the infused enzyme to the CNS and lungs and its high cost require the need for improvement.⁶

A proposed alternate therapeutic strategy is the use of small molecular chaperones to restore the cellular function of the

mutant enzyme. Small molecules that bind the mutant protein can facilitate its proper folding and increase the translocation of the mutant enzyme to the lysosome.^{7,8} Several iminosugar inhibitors of glycosidases have been reported to have chaperone activity.^{9–20} For GC, two iminosugars have been clinically evaluated, eliglustat (bis{*N*-[(1*R*,2*R*)-2-(2,3-dihydro-1,4-benzodioxin-6-yl)-2-hydroxy-1-(pyrrolidin-1- ylmethyl)ethyl]octanamide} (2*R*,3*R*)-2,3-dihydroxybutanedioate, Genz-112638),²¹ currently in clinical trials, and isofagomine (3,4-piperidinediol, 5-(hydroxymethyl)-, (3*R*,4*R*,5*R*)-, (2*R*,3*R*)-2,3-dihydroxybutanedioate (1:1), Afegostat, 1),²² whose development was recently halted during phase II testing.

Because iminosugar inhibitors work by mimicking the transition state of the glycosidic cleavage, they tend to be poorly selective.¹³ Alternative scaffolds with chaperone activity are quite desirable. In addition, it is important that the compound inhibitory potency is not the primary determinent of therapeutic potential because native substrates need to be able to displace the inhibitor after translocation to the lysosome.^{2,8,23} Thus, molecules that have moved to clinical testing are not the most potent inhibitors known.²⁴ A goal of the current study was to develop a noniminosugar series with a favorable balance between inhibitory potency and chaperone activity.

In the cell, GC activity is modulated through the binding of an allosteric activator, Saposin C.²⁵ In isolation, the addition of a bile salt is required to induce GC activity.²⁶ A series of GC inhibitors identified by screening with purified enzyme were found to have reduced or absent activity when tested in tissue homogenate assays. We speculate that this difference in activity is due to nonspecific protein binding and/or to GC conformational differences between the conformation induced by detergent and that induced by Saposin C. In addition, activity differences are observed between wild-type and mutant enzymes. As 70% of Gaucher patients carry the N370S mutation, we focused our efforts on the use of spleen²⁷ homogenate

^{*}To whom correspondence should be addressed. Phone: 301-217-9198. Fax: 301-217-5736. E-mail: maruganj@mail.nih.gov.

^{*a*} Abbreviations: 4MU, 4-methylumbellifereone; Boc, *tert*-butyloxycarbonyl; CNS, central nervous system; DMSO, dimethylsulfoxide; DNJ, deoxynojirimycin; ER, endoplasmic reticulum; ERT, enzymatic replacement therapy; FDA, Food and Drug Adminstration; GC, glucocerebrosidase; HPLC, high performance liquid chromatography; HTS, high throughput screening; IC₅₀, half maximal inhibitory concentration; LC-MS, liquid chromatography–mass spectrometry; LSD, lysosomal storage disorder; SRA, structure–activity relationship.

Figure 1. Evaluation of the hydrolytic capacity of GC in the presence of compound 10. Activity of compound 10 was representative of all the analogues in this series; they are selective inhibitors of GC, but their activity in purified GC assays without exogenous cofactors is greatly diminished. The inhibitory capacity was analyzed by mesuaring the fluorescent signal of 4-methylumbelliferone using ViewLux.

Table 1. SAR of Commercial Quinazolines for Inhibiting the Hydrolysis of 4-Methylumbelliferone β -D-Glucopyranoside in N370S Tissue Homogenate Followed by ViewLux

homozygous for the N370S mutation for screening for GC inhibitors and activators. GC specific activity was evaluated using 4-methylumbelliferone β -D-glucopyranoside. Upon hydrolysis, the blue dye 4-methylumbelliferone (4-MU) is liberated, producing a fluorescent emission at 440 nm when excited at 370 nm. Active compounds were then further characterized in several additional assays to confirm specificity, rule out artifacts, and most importantly, characterize chaperone activity.

2. Results

In a screen of 326770 compounds,^{26,28,37} we found several series of GC inhibitors. Among them, several quinazoline analogues were confirmed. Additional evaluation of the series was carried out by purchasing available analogues from commercial sources. Table 1 shows the inhibitory activity of several of the commercially available analogues in the primary screening assay. All were inactive against the related sugar hydrolases α -glucosidase and α -galactosidase at a 50 μ M

Figure 2. Principles of enzyme reactions and product spectra of two GC enzyme assays. (a) The "Blue" GC enzyme assay. The pro-fluorescent substrate 4MU- β -Glc is hydrolyzed to form two products, glucose and 4MU, with an excitation peak of 365 nm and an emission peak of 440 nm. This assay is used for the primary screen. (b) The "Red" GC enzyme assay. The pro-fluorescent substrate Res- β -glucopyranoside is hydrolyzed to form two products, glucose and resorufin, with an excitation peak of 573 nm and an emission peak of 590 nm. (c) The "fluorescent ceramide" GC enzyme assay. The glucosyl ceramide fluorescent substrate is hydrolyzed to form two products, glucose and fluorescent ceramide. Both substrate and product are fluorescent, and its ratio was detected with an excitation peak of 505 nm and an emission peak of 540 nm upon separation by HPLC. (d) The "natural ceramide" GC enzyme assay. The glucosyl ceramide natural substrate is hydrolyzed to form two products, glucose and ceramide. Then the glucose was coupled with the Amplex Red glucose oxidase assay³⁸ for final detection.

concentration, and none exhibited autofluorescence. In addition, these compounds had very similar activity against GC as determined using an alternate resorufin-based substrate, thereby ruling out nonspecific effects on the fluorescent reporter. However, all of the compounds were much less potent in purified enzyme assays of GC activity (Figure 1). This is in contrast to isofagomine 1, which shows similar activity in tissue homogenate and purified enzyme assays. The difference may reflect the lack of exogenous activating cofactors in the purified enzyme assay. Importantly, this hampers our ability to measure the effect of these compounds on glucosylceramide cleavage, whose activity we are only able to measure using purified enzyme preparations. To demonstrate chaperone activity, we measured the capacity of hit compound 14 to increase the translocation of GC to the lysosome.^{8,16,29,30} In this experiment, wild-type and mutant fibroblasts were incubated for five days with compound 14 at a range of concentrations from 1 nM to $50 \,\mu$ M, followed by cell fixation and staining with a selective fluorescent GC antibody. Compounds able to promote trafficking from the ER to the lysosome increased the fluorescent lysosomal signal. DMSO and isofagomine were use as negative and positive controls. Figure 3 shows the increment of signal in several Gaucher cell lines that resulted from treatment with our lead compound, confirming the chaperone capacity of the series.

With this data in hand, we embarked on systematic SAR modifications. Scheme 1 shows the synthesis strategy for some of the modifications at the quinazoline core.³¹ Commercially available Boc protected piperazine **15** was sulphonated, using

Figure 3. Chaperone activity of compound 14, and isofagomine using wild-type and homozygous, mutant N370S GC fibroblasts. Two genotypes of fibroblasts, fibroblasts homozygous for wild-type GC (top) and fibroblasts homozygous for N370S GC (bottom) were stained both with a Cy3-labeled antibody for GC protein content (first row) and a FITC-labeled antibody specific for lysosomal compartments (LAMP1; second row) after treatment with (1) DMSO vehicle, (2) 10 uM Isofagomine, (3) 10 μ M compound 14. Both compounds show increased lysosomal GC protein after treatment.

the sulphonyl chloride **16** in the presence of a suitable base such as diisopropylethylamine, followed by a quantitative deprotection of the Boc functional group to yield intermediate Scheme 1. General Strategy for Modification in the Functional Core

Scheme 2. Synthesis of Purine Analogues

17. The next step selectively displaced chloro at the core ring 18 to produce compound 19, followed by a Suzuki crosscoupling reaction with an aromatic or heteroaromatic boronic acid 20 to produce the final compound 21. Application of this synthetic strategy allowed us to synthesize analogues having quinazoline, pyrimidine, and isoquinoline cores.

The synthesis of analogues with a purine core, Scheme 2, required the selective protection of the ring NH with methyl pivalate, followed by cross coupling and deprotection. Intriguingly, numerous attempts to carry out the Suzuki reaction with free purine cores or using a Boc protecting group failed to yield the coupling product.

To evaluate SAR on the sulphonamide portion of the molecule, we modified the synthetic procedure that allowed us to introduce variation at the last step of the synthesis. Scheme 3 shows how sulphonylation, carboxylic coupling, and alkylation of the key intermediate **25**, provides a variety of final compounds.

We also synthesized a number of analogues, testing the flexibility of the diamine linker as well as the activity of some piperazine bioisosteres attached at position four of the quinazoline ring. Schemes 4, 5, and 6 show some of these alternative strategies.

To produce analogues with aromatic and heteroaromatic modifications at the 2 position, we utilized Scheme 7, which details the production of the organotin **55** as a convenient intermediate for last step diversification using Stille coupling.

Scheme 3. Synthesis of Analogues with Modification of the Aromatic Sulphonamide

2,4-quinazoline dione, **52**, was converted to 2,4-dibromoquinazoline **53** with phosphorus oxybromide. Selective halogen displacement with substituted piperidine **17a** and lithium halogen exchange follow by reaction with tributyl tin chloride yielded compound **55**. Cross coupling between **55** and heteroaromatic halogens yielded final compounds **56**.

Additional modifications at the same position 2 were obtained as shown in Scheme 8. Cross-coupling with zinc cyanide catalyzed by palladium yielded intermediate **57**. Then, hydrolysis of the nitrile functional group with aqueous HCl produced the amide **58**. Alternatively, hydrolysis with HCl gas in the presence of MeOH yielded the methyl ester **59**. Additionally, reaction with methylmagnesium bromide provided the ketone **60**. Last, Scheme 9 disclosed modifications in position 2 trying to increase the solubility of the molecule.

Tables 2-6 show the capacity of all final compounds to inhibit the hydrolysis of 4-methylumbelliferone β -D-glucopyranoside

Scheme 4. Synthesis of Analogues with a Flexible Linker

Scheme 5. Synthesis of Additional Analogues with a Modifications in Position 4

in N370S tissue homogenate. In the context of our assay, AC_{50} corresponds with half maximal activity concentration, either inhibitory or activating. As a positive control, we measured the activity of isofagomine in the same assay ($AC_{50} = 0.080 \,\mu$ M).

Figure 4 compares the compound profiles of isofagomine and one of the more potent analogues against the hydrolysis of 4-methylumbelliferone β -D-glucopyranoside and a fluorescent glucosylceramide by wild-type and mutant N370S GC using tissue homogenate and isolated enzyme.

We also measured the capacity of several compounds from this series to protect the GC protein from thermal denaturation by using the fluorescence thermal shift techniques, also referred to as differential scanning fluorometry. Figure 5 shows that several compounds in the series have a strong ability to protect the GC enzyme from denaturation, with some concentration-dependent shifts in the transition temperature (T_m) exceeding 15 °C.

Last, we evaluated the chaperone capacity of some of our best compounds by measuring the increase in ER-lysosome GC translocation using human fibroblasts from both normal individuals and Gaucher patients. Figure 6 shows the results after fiveday incubation and treatment with a fluorescent GC antibody.

Scheme 6. Synthesis of Analogues Having a Substituted Piperidine in Position 4

Scheme 7. Synthesis of Analogues with Modifications at 2 Position

3. Discussion

One of the main problems facing rare and neglected disease research is the development of relevant assays for HTS and SAR studies. The field of lysosomal storage disorders is characteristic of this problem. While some small molecule chaperones, like the iminosugars, have progressed into clinical testing, the clinical development of most compounds has been challenging due to their poor selectivity and the difficulty in resolving the therapeutic index between enzymatic inhibition and pharmacologic chaperoning. Ideally, a good small molecule chaperone would not impact the hydrolytic capacity of the enzyme, however, all previously advanced series have been

inhibitors. This is likely a consequence of the type of assay chosen for HTS and reflects the ready availability of the purified enzyme for high-throughput screening and the ease of implementation of fluorogenic screening assays. In our hands, we have observed that several series found in purified enzyme assay reduced or lost their activity in the native environment of tissue homogenate. This might be due to the absence of necessary cofactor subunits in the purified enzyme. We also have observed that some series with inhibitory capacity in tissue homogenate assays do not show enhanced activity with isolated enzyme, probably also due to differences in the enzymatic conformational states induced by different assay conditions. Purified enzyme is likely insensitive to activators because of artificial activation by the bile salt in the assay buffer.³² Figure 1 shows that the series described in this paper display N370S inhibitory activity only in tissue homogenate conditions, and therefore HTS using purified enzyme would have failed to discover this series.

The capacity of a molecule to inhibit a hydrolytic enzyme does not directly correlate with its capacity to induce proper folding and chaperone activity. For this reason, before the initiation of our SAR studies, we decided to evaluate the chaperone capacity of our series. The increase in GC translocation to the lysosome can be measured in patient-derived fibroblasts (Figure 3), but this remains a labor-intensive, lowthroughput assay, unsuitable for broad SAR analysis. As surrogate assay, we used the primary screening assay, hydrolyzing an artificial pro-fluorescent substrate in the context of tissue homogenate. Increases in inhibition should correlate with increases in binding and render this assay a reasonable surrogate. Another surrogate for chaperone activity is to measure the capacity of compounds to protect the protein from denaturation regardless of their ability to inhibit its enzymatic activity. We have used both of these assays to guide our SAR with the aim of obtaining compounds with a greater binding capacity that should translate into better chaperone activity.

It should be noted that the kinetics of the hydrolytic reaction not only depends on the conditions of the assay (purified enzyme or homogenate) and enzyme (wild-type or mutant) but also on the nature of the enzymatic substrate. We have previously observed³³ important differences between the hydrolysis of natural and artificial substrates. To better characterize the potential of the present compounds to inhibit the hydrolysis of the natural substrate, glucosylceramides, in native enzyme preparation (e.g., tissue homogenate), we developed and validated an LC-MS method to follow the hydrolysis of a native substrate tagged with a fluorescent dye, Figure 2.

SAR of this series demonstrates that there are strict requirements for maintaining activity. Tables 2 and 3 show the activity of analogues with sulfonamide aromatic modifications. In general, potency changes up to 25-fold between aromatic substituents. In analyzing derivatives with a single substitution, it can be observed that substituents in para, and especially in ortho, positions tend to provide better activity, with the para methyl analogue being our most potent compound (**26ad**) with an IC₅₀ of 320 nM. As a group, there are no large differences between the activity provided by halogen, electron withdrawing, and electron donating functional groups. Regarding bicyclic rings, combination of electrodonating groups in meta and para positions (Table 3, compounds **26bs**, **26bt** and **26by**) provide the most potent compounds.

We also studied modifications in the piperidine linker. Elimination of the aromatic ring of the sulphonamide is detrimental to the activity of the molecule (Table 4, compounds **26cb**,

Scheme 9. Modification at the Thiophene Ring

26cc, **26cd**). Replacement of the sulphonamide by an amide group also reduces the activity (Table 4, compounds **29** and **30**). This reduction is even greater when the sulphone is eliminated and a benzyl substituent is directly attached to the piperidine ring (Table 4, compound **28**). Analogues **51** and **38** show that both nitrogens of the piperidine ring play an important role in maintaining the activity, with the one next to the quinazoline ring being especially important. The angle (Table 4, compound **35c**) and rigidity (Table 4, compounds **35a** and **35b**) of the linker is also important for activity.

The next modifications studied entailed the replacement of the aromatic substituent at the two position of the quinazoline ring. Table 5 shows that the complete elimination of the substitution (compound 62) reduces the activity by more than 60 times and replacing it with nonaromatic functional groups, compounds 59, 60, 58, 57, and 61, greatly reduce the activity. Introduction of an unsubstituted phenyl ring at two position (compounds 62 and 21aa) increase the activity of the molecule, although all analogues with substituents in this phenyl ring abolish the activity (compounds 56l, 56m, 56n, and 56o). Replacement of the phenyl aromatic ring by a six-membered heteroaromatic ring, encompassing a nitrogen reduces or abolishes the activity (compare compounds 21aa with 56f, 56g, 56h, 56i, 56j, and 56k). The introduction of a fivemembered heteroaromatic ring with an unsubstituted 2-thiophene displayed the best activity (compound 26ad), followed by 3-furan (compound 56e) and 4-thiazolyl (compound 56c). In addition, a 1-benzoimidazole substitution (compound 63) also provides better activity than a plain phenyl ring (compound 21aa).

The last modifications studied were analogues of the quinazoline core. Replacement of the quinazoline core by a purine results in a loss of activity (Table 6, compounds **21bb** and **21bc**). Elimination of the quinazoline nitrogens also impacts the activity, reducing (compounds **71**) or completely abolishing it (compound **70**). The introduction of one additional nitrogen within position 5 or 8 of the quinazoline ring (compounds **72** and **73**) reduced at least the activity by at least 10 times. Replacement of the quinazoline ring by a unsubstituted pyrimidine ring (compound **74**) reduced the activity by 32 times, although the reduction was by only 10 times if the pyrimidine was bearing methyl groups in positions 5 and 6 (compound **76**). Last, introduction of a chloro substituent in position 7 of the quinazoline ring completely abolished the activity (compounds **77–84**)

In summary, SAR of this series demonstrates a very narrow functional modification, with the need to keep most of the functionalities of the molecule, such us the quinazoline core, the piperidine ring, the sulphonamide substitution, and the thiophene hetearomatic ring at 2 position to avoid elimination or drastic reduction of activity. Even so, we were able to increase the potency of the molecule to the desired range. Our most potent noniminosugar compound displays an IC₅₀ in the "blue" GC enzyme assay, Figure 2, of 320 nM, while the iminosugar isofagomine has an IC₅₀ of 80 nM.

In addition, we used HPLC to track by the hydrolysis of a native substrate tagged with a fluorophore.³⁴ As validation of this method, Figure 4A, we first compared the IC_{50} values of isofagomine using LC-MS or a ViewLux fluorescent reader when the tissue homogenate hydrolysis of 4-methylumbelliferone

Table 2. SAR for Inhibiting the Hydrolysis of 4-Methylumbelliferone β -D-Glucopyranoside in N370S Tissue Homogenate Followed by ViewLux of Analogues with Sulfonamide Aromatic Modifications Having a Phenyl at 2 Position

Compoun number	d R1	N370S ΑC ₅₀ (μΜ)	Compound number	R1	Ν370S AC ₅₀ (μΜ)	Compound number	^d R1	N370S AC ₅₀ (μΜ)
21aa		12.67	Br 21ak		25.29	21au	O ₂ N	20.08
21ab		- 31.83	21al		Br 12.67	21av	NO ₂	31.83
21ac		12.67	F ₃ C 21am		7.99	21aw		100.67
21ad		12.67	21an		³ 31.83	21ax		15.85
21ae	€o ^c	F ₃ 31.83	21ao		CF ₃ 31.83	21ay		12.67
21af		— 15.95	21ap		OEt 25.29	21az		25.29
21ag	F	20.08	21aq		20.08	12		6.35
21ah		50.45	21ar		NH ₂ S 25.29 O	21ba		12.67
21ai		15.95	NC 21as		31.83			
21 aj	CI	12.67	21at		CN 40.07			

 β -D-glucopyranoside was measured. Although each molecule was able to inhibit the hydrolysis of the ceramide, in Figure 4B, it can be seen that the series displayed better IC₅₀s for the hydrolysis of the 4-methylumbelliferone β -D-glucopyranoside than for the hydrolysis of the ceramide. This was also characteristic of isofagomine, but in general, the inhibitory capacity of our series is smaller both in term of IC₅₀'s as well as maximum inhibition of the enzyme.

We also evaluated the selectivity of our inhibitors toward other lysosomal glycosidases. None of the compounds in our series showed any capacity to modulate the activity of acid α -glucosidase and α -galactosidase, thus ruling them out as promiscuous agents.

One means to measure the capacity of a small molecule to bind and stabilize a protein is by evaluating its ability to change the transition temperature (T_m) during thermal denaturation experiments. Previous authors³⁵ have shown that small molecule chaperones are able to thermostabilize mutant proteins. Figure 5 shows the impact of our best inhibitors in raising the melting point of glucocerebrosidase. Our best inhibitors are able to produce an extraordinary shift in the temperature of denaturation of GC (see Table 8 for details in T_m shift at each concentration for each compound), with much greater values than those observed for isofagomine or DNJ. Reports have shown that the increment in melting point often correlates directly with the compound's binding affinity³⁶ and therefore this experiment, in conjunction with the previous one, demonstrates that our best inhibitors have a lower inhibitory capacity than isofagomine, but a greater protein stabilizing capacity and binding affinity. **Table 3.** SAR for Inhibiting the Hydrolysis of 4-Methylumbelliferone β -D-Glucopyranoside in N370S Tissue Homogenate Followed by ViewLux of Analogues with Sulfonamide Aromatic Modifications Having a Thiophene at 2 Position

			L	N</th <th>\uparrow^s</th> <th></th> <th></th> <th></th>	\uparrow ^s			
Compound number	R1	N370S AC ₅₀ (μΜ)	Compound number	R1	N370S AC ₅₀ (μM)	Compound number	R1	N370S AC ₅₀ (μΜ)
26aa		1.26	9	-CI	1.27	26bl		2.53
26ab		3.18	26at		2.52	26bm		4.00
26ac		2.52	26au	Br	2.52	26bn	S N	5.04
26ad		0.32	26av	Br	3.18	26bo	s S	1.00
26ae		0.80	26aw §	Br	1.26	26bp	s s	1.27
26af		1.59	26ax §	F ₃ C	0.63	26bq		3.18
26ag		2.00	26ay		7.99	13		1.59
26ah		<u>/</u> 2.00	26az		4.00	26br		1.01
26ai		0.40	26ba		2.53	26bs		0.50
26aj		1.00	26bb		2.53	26bt		0.50
26ak	÷	/ 1.00	26bc	-	2.53	26bu		1.59
26al	ó	CF ₃ 3.18	26bd	-∕s`₀	5.04	26bv		1.26
26am		/ 2.00	26be		0.32	26bw		2.53
26an	F	1.27	26bf		it 0.80	26bx		1.01
26ao	F	1.27	26bg	D ₂ N	1.27	26by		0.50
26ap	F	1.00	26bh §	NO ₂	3.18	26bz		1.26
26aq	F F	1.59	26bi		4.01	26ca	S N	1.01
26ar		1.27	26bj		1.59			
26as	, ci	2.01	26bk §		2.35			

Table 4. SAR for Inhibiting the Hydrolysis of 4-Methylumbelliferone β -D-Glucopyranoside in N370S Tissue Homogenate Followed by ViewLux of Analogues with the Modifications at the Linker

 $\sim N \sim R_2$

				R ₁			
Compound number	i R1	R2	N370S AC50 (μΜ)	Compound number	R1	R2	N370S AC50 (μΜ)
26ad		soor S	0.32	26cd	%NNS=0 0	2 geocher S	50.45
35a		sore S	2.52	26cc		s co	10.07
35b		5000 S	2.52	29		source S	2.00
85		and and the second	50.45	30		Sound S	3.18
39	NH O O	soor S	1.00	28		sorre S	79.98
33a		sore S	5.04	51		2 roperty S	Inactive
23		soor S	50.45	38		sore S	6.35
4		soon S	79.98	35c	Arton N-S=0	sore S	6.35
26cb		soroes S	15.96		✓ 0		

To demonstrate that this binding affinity translates into chaperone capacity, we evaluated the ability of our best compounds to increase the translocation of GC. Wild-type and mutant fibroblast were incubated for five days with compounds **14**, **26ad**, **26ai**, **26bs**, and **62** in a range of concentrations from 1 nM to 25 μ M, using isofagomine as a positive control. At the end of the experiment, cells were fixed and the GC concentration evaluated using a selective fluorescently labeled antibody. Co-localization of GC in the lysosome was evaluated using confocal microscopy. Figure 6 shows that upon treatment with our compounds there was a clear increase of the amount of GC localized to the lysosome.

Conclusion

In conclusion, we present the discovery, SAR study, and biological evaluation of a new non-iminosugar GC inhibitory series with chaperone activity. SAR optimization yielded compounds at an IC₅₀ of 320 nM in our homogenate tissue assay. The compounds have a reduced capacity to inhibit the hydrolysis of a ceramide natural-like substrate, and they were selective versus other glycosidases. Thermal denaturation assays further demonstrated the capacity of our series to stabilize the GC structure. Last, these compounds increased the ER-lysosomal trafficking of several GC mutants. Additional metabolic optimization studies, pharmacokinetics, and in vivo evaluation are currently underway to advance the development of this series as a potential therapeutic modality.

5. Experimental Section

5.1. Chemistry. The reagents and solvents were used as commercial anhydrous grade without further purification.

Table 5. SAR for Inhibiting the Hydrolysis of 4-Methylumbelliferone β -D-Glucopyranoside in N370S Tissue Homogenate Followed by ViewLux of Analogues with Modification at the 2 Position of the Quinazoline Core

Compounds 2–8, 10–14, 21aa–21az, 21ba, 26aa, 26al, 26am, 26au–26az, 26bc, 26bd, 26bf–26bi, 25bl, and 26br were purchased from Enamine. Compounds 56e, 56l–56o, 61, 75, and 77–85 were purchased from AMRI. Besides the certificate of analysis provided

by those companies, we performed quality control analysis using a LC-MS system. All of them showed purity greater than 95%.

Column chromatography was carried out over silica gel (100–200 mesh). ¹H NMR spectra were recorded with a Bruker

Table 6. SAR for Inhibiting the Hydrolysis of 4-Methylumbelliferone β -D-Glucopyranoside in N370S Tissue Homogenate Followed by ViewLux of Analogues with Modifications at the Molecular Core

Compound number	Molecular core	R1	R2	N370S AC50 (μM)	Compound number	Molecular core	R1	R2	N370S AC50 (μΜ)
26 ad	\mathbb{R}_{1} N \mathbb{R}_{2}		5 grand S	0.32	78 CI	R ₁ N R ₂		-3 sage S	Inactive
70	$\overset{R_1}{\bigvee}_{R_2}$		sold and the second	Inactive	79			solution of the second	Inactive
71	N R2		or start S	20.08	80 CI			and the provided t	Inactive
72	\mathbb{R}_{1}		or of the second	4.00	81 CI			poor F	Inactive
73			or and the second	3.18	82 CI			port F	Inactive
74			300 Contraction of the second	10.31	83 CI	R ₁ N N R ₂		and the second s	Inactive
75	\mathbb{N}		or S	Inactive	84			550 Art	Inactive
76	$\mathbb{A}_{N}^{R_{1}}$		or of the second	3.18	21bc			5-00-00-00 S	Inactive
77			son and S	Inactive	21bb			sore S	Inactive

400 MHz spectrometer from solutions in CDCl₃ and DMSO- d_6 . Chemical shifts in ¹H NMR spectra are reported in parts per million (ppm, δ) downfield from the internal standard Me₄Si (TMS, $\delta = 0$ ppm). Molecular weight confirmation was performed using an Agilent time-of-flight mass spectrometer (TOF, Agilent Technologies, Santa Clara, CA). A 3 min gradient from 4 to 100% acetonitrile (0.1% formic acid) in water (0.1% formic acid) was used with a 4 min run time at a flow rate of 1 mL/min. A Zorbax SB-C18 column (3.5 μ m, 2.1 mm × 30 mm) was used at a temperature of 50 °C. Confirmation of molecular formula (Table 7) was done using electrospray ionization in the positive mode with the Agilent Masshunter software (version B.02).

Preparation of 1-Tosylpiperazine (17a). *N*,*N*-Diisopropylethylamine (28.5 mL, 167.52 mmol) and *p*-toluenesulfonylchloride **16a** (11.27 g, 59.13 mmol) were added to a stirring solution of *N*-Boc-piperizine **15** (10.0 g, 53.75 mmol) in NMP (80 mL) at 0 °C. After stirring for 3 h at room temperature, the reaction mixture was diluted with water (150 mL) and extracted with EtOAc (3×50 mL). The combined organic layer was washed with water (3×50 mL) and brine (3×50 mL), dried over Na₂SO₄, and filtered. The filtrate was concentrated under reduced pressure. The crude residue was purified by trituration with hexanes and dried under vacuum to afford the intermediate Boc-protected sulphonamidopiperizine (18.0 g, 96%) as an off-white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.0 Hz, 2H), 2.97–2.90 (m, 8H), 2.43 (s, 3H), 1.45 (s, 9H). MS (ESI) m/z 341 [C₁₆H₂₄N₂O₄S + H]⁺.

Hydrochloric acid in 1,4-dioxane (20%, 30 mL) was added to a stirring solution of the above Boc-protected sulphonamidopiperizine (18.0 g, 60.60 mmol) in CH₂Cl₂ (50 mL) at 0 °C. After stirring for 16 h at room temperature, the precipitated solids were filtered off and the filter cake was dissolved in water (50 mL). The resulting aqueous solution was washed with CH₂Cl₂ (2 × 20 mL), cooled to 0 °C, and basified to pH 12 with a 6 N NaOH solution. The resulting aqueous solution was extracted with CH₂Cl₂ (2 × 30 mL), and the combined organic layers were dried over Na₂SO₄ and then filtered, and the filtrate was concentrated under reduced pressure to afford amine **17a** (11.0 g, 84%) as an off-white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.63 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 2.97–2.90 (m, 8H), 2.43 (s, 3H). MS (ESI) *m/z* 241 [C₁₁H₁₆N₂O₂S + H]⁺.

General Procedure for the Synthesis of Core 19: Displacement of Halide on the Heterocyclic 18. N,N-Diisopropylethylamine

Figure 4. ViewLux and LC-MS analysis of the capacity of some our best compounds to inhibit of the hydrolysis of 4-methylumbelliferone β -D-glucopyranoside (4MU) and a fluorescent glucosylceramide (FlourGC) carried out by wt GC or by N370S mutant variant using tissue homogenate. ViewLux experiments were run in triplicate, and mean and standard deviation values are plotted. (A) Inhibitory curves of isofagomine 1 in tissue homogenate. (B) Inhibitory curves of 26ad in tissue homogenate. (C) LC-MS chromatogram analysis of the hydrolysis of fluorescent glucosylceramide carried out by tissue homogenate wt GC in the presence of no inhibitor (A) 12.5 μ M of 26ad (B) or 12.5 μ M of isofagomine 1 (C). The first eluding peak corresponds with the starting material (Figure 2C) and the second one with the product of the reaction.

(11.2 mL, 64.40 mmol) and amine **17** (8.00 g, 33.20 mmol) were added to a stirring solution of the heterocyclic halide **18** (36.5 mmol) in NMP (50 mL) at 0 °C. After stirring for 3 h at room temperature, the reaction mixture was diluted with water (100 mL) and extracted with EtOAc (3×30 mL). The combined organic layers were washed with water (3×50 mL) and brine (3×50 mL), dried over Na₂SO₄, and filtered. The filtrate was concentrated under reduced pressure. The crude residue was purified by trituration with hexanes and dried under vacuum to afford heterocycle **19**.

2-Chloro-4-(4-tosylpiperazin-1-yl)quinazoline (19a). Yield 63%. ¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 8.8 Hz, 1H), 7.75–7.66 (m, 2H), 7.67 (d, J = 8.0 Hz, 2H), 7.44 (t, J = 7.6 Hz, 1H), 7.36

Figure 5. Capacity of select compounds to protect wild-type glucocerebrosidase from thermal denaturation (increase in $T_{\rm m}$ relative to a protein-only control shown). (A) Thermal melt curves of selected compounds. (B) Structure of analyzed inhibitors.

(d, J = 8.0 Hz, 2H), 3.95 (t, J = 4.8 Hz, 4H), 3.20 (t, J = 4.8 Hz, 4H), 2.45 (s, 3H). MS (ESI) m/z 403 $[C_{19}H_{19}ClN_4O_2S]^+$.

2-Chloro-4-(4-tosylpiperazin-1-yl)pyrido[**2,3-***d*]**pyrimidine (19d).** Yield 82%. ¹H NMR (400 MHz, CDCl₃) δ 7.84–7.32 (m, 5H), 7.47–7.40 (m, 3H), 4.51 (d, *J* = 13.2 Hz, 2H), 3.26–3.11 (m, 3H), 2.48 (s, 3H), 2.18 (d, *J* = 10.8 Hz, 2H), 2.05–1.94 (m, 2H). MS (ESI) *m*/*z* 402 [C₂₀H₂₀ClN₃O₂S]⁺.

2-Chloro-4-(4-tosylpiperazin-1-yl)pyrido[**3,2-***d*]**pyrimidine** (**19e).** Yield 61%. ¹H NMR (400 MHz, CDCl₃) δ 8.66 (d, J = 1.6 Hz, 1H), 8.01 (d, J = 8.4 Hz, 1H), 7.65 (d, J = 8.4 Hz, 2H), 7.62–7.60 (m, 1H), 7.32 (d, J = 8.0 Hz, 2H), 4.77–4.66 (m, 4H), 3.20 (t, J = 5.2 Hz, 4H), 2.41 (s, 3H). MS (ESI) m/z 404 [C₁₈H₁₈ClN₅O₂S]⁺.

2-Chloro-4-(4-tosylpiperazin-1-yl)pyrimidine (19f). Yield 58%. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.05 (d, *J* = 4.0 Hz, 1H), 7.61 (t, *J* = 8.0 Hz, 2H), 7.43 (d, *J* = 8.0 Hz, 2H), 6.78 (d, *J* = 8.0 Hz, 1H), 3.70 (s, 4H), 2.93 (t, *J* = 4.0 Hz, 4H), 2.38 (s, 3H). MS (ESI) *m*/*z* 353 [C₁₅H₁₇ClN₄O₂S]⁺.

2-Chloro-4,5-dimethyl-6-(4-tosylpiperazin-1-yl)pyrimidine (19g). Yield 63%. ¹H NMR (400 MHz, CDCl₃) δ 7.66 (d, J = 8.4 Hz, 2H), 7.35 (d, J = 8.0 Hz, 2H), 3.46 (t, J = 4.8 Hz, 4H), 3.12 (t, J = 4.8 Hz, 4H), 2.45 (s, 3H), 2.36 (s, 3H), 2.04 (s, 3H). MS (ESI) m/z 381 [C₁₇H₂₁ClN₄O₂S]⁺.

3-Chloro-1-(4-tosylpiperazin-1-yl) isoquinoline (19h). Yield 41% yield ; MS (ESI) m/z 402 [C₂₀H₂₀ClN₃O₂S + H]⁺.

2-(Thiophen-2-yl)-4-(4-tosylpiperazin-1-yl)quinoline (71). Prepared from 4-chloro-2-(thiophen-2-yl)quinoline²⁹ according to the same general procedure for synthesis of compounds **18**; 30% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 8.4 Hz, 1H), 7.78–7.74 (m, 3H), 7.70 (d, J = 4.8 Hz, 1H), 7.64–7.60 (m, 1H), 7.46 (d, J = 6 Hz, 1H), 7.43–7.36 (m, 3H), 7.24 (s, 1H), 7.17–7.15 (m, 1H), 3.35 (s, 8 H), 2.49 (s, 3H). MS (ESI) m/z 450 [C₂₄H₂₃N₃O₂S₂ + H]⁺.

Figure 6. Chaperone activity of some of our compounds using a GC fluorescent antibody (red), a lisosome marker (LAMP2, green), and a nucleus marker (DAPI, blue). Active GC tranlocators increase the colocalization of GC and LAMP2 antibodies, visually increasing the yellow color.

General Procedure for the Suzuki Coupling. The boronic acid 20 (2.48 mmol) and K_2CO_3 (2.48 mmol) were added to a stirring solution of 2-chloroheterocycle 19 (1.24 mmol) in 1,4-dioxane and water (10 mL:1 mL). The reaction mixture was purged with argon gas for 20 min, and Pd(PPh₃)₄ (0.12 mmol) was added. The reaction mixture was heated at reflux temperature for 16 h under an argon atmosphere. The reaction mixture was cooled to room temperature, diluted with water (30 mL), and extracted with EtOAc (3 × 10 mL). The combined organic layers were washed with water (3 × 20 mL), dried over Na₂SO₄, and filtered. The filtrate was purified by silica-gel column chromatography to afford 21 as an oil.

2-(Thiophen-3-yl)-4-(4-tosylpiperazin-1-yl)quinazoline (26ad). Yield 25%. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 7.92– 7.90 (m, 2H), 7.75–7.68 (m, 4H), 7.40–7.34 (m, 4H), 3.89 (s, 4H), 3.26 (s, 4H), 2.43 (s, 3H). MS (ESI) *m/z* 449 [C₂₄H₂₃N₃O₂S₂ + H]⁺.

2-(5-Methylthiophen-2-yl)-4-(4-tosylpiperazin-1-yl)quinazoline (56a). Yield 25%. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 8.0 Hz, 1H), 7.80 (d, J = 4.0 Hz, 1H), 7.72–7.66 (m, 4H), 7.33 (t, J = 6.0 Hz, 1H), 3.89 (t, J = 8.0 Hz, 4H), 3.24 (t, J = 4.0 Hz, 4H), 2.55 (s, 3H), 2.43 (s, 3H). MS (ESI) m/z 465 [C₂₄H₂₄N₄O₂S₂ + H]⁺.

2-(Pyridin-3-yl)-4-(4-tosylpiperazin-1-yl)quinazoline (56f). Yield 25%. ¹H NMR (400 MHz, CDCl₃) δ 9.66 (s, 1H), 8.75– 8.69 (m, 2H), 7.97 (d, J = 8.4 Hz, 1H), 7.89–7.68 (m, 4H), 7.46– 7.40 (m, 2H), 7.34 (d, J = 8.0 Hz, 2H), 3.96 (t, J = 4.4 Hz, 4H), 3.26 (t, J = 4.4 Hz, 4H), 2.42 (s, 3H). MS (ESI) m/z 446 [C₂₄H₂₃N₅O₂S + H]⁺.

2-(Pyridin-4-yl)-4-(4-tosylpiperazin-1-yl)quinazoline (55g). Yield 18%. ¹H NMR (400 MHz, CDCl₃) δ 8.75 (d, J = 5.2 Hz, 2H), 8.31 (d, J = 5.6 Hz, 2H), 7.99 (d, J = 8.4 Hz, 1H), 7.81–7.75 (m, 2H), 7.69 (d, J = 8.0 Hz, 2H), 7.47 (t, J = 7.6 Hz, 1H), 7.34 (d, J = 8.4 Hz, 2H), 3.95 (t, J = 4.4 Hz, 4H), 3.27 (t, J = 4.8 Hz, 4H), 2.42 (s, 3H). MS (ESI) *m*/*z* 446 [C₂₄H₂₃N₅O₂S + H]⁺.

Preparation of 3-(Thiophen-2-yl)-1-(4-tosylpiperazin-1-yl)isoquinoline (70). Yield 12%. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, J = 8.0 Hz, 1H), 7.72 (d, J = 8.0 Hz, 3H), 7.61–7.53 (m, 3H), 7.40–7.33 (m, 4H), 7.10 (t, J = 4.0 Hz, 1H), 3.59 (t, J = 4.0 Hz, 4H), 3.30 (t, J = 4.0 Hz, 3H), 2.44 (s, 3H). MS (ESI) m/z 450 [C₂₄H₂₃N₃O₂S₂ + H]⁺.

2-(Thiophen-2-yl)-4-(4-tosylpiperazin-1-yl)pyrido[**3**,2-*d*]**pyrimidine** (**72).** Yield 18%. ¹H NMR (400 MHz, CDCl₃) δ 8.61–8.59 (m, 1H), 8.09–8.07 (m, 1H), 7.96 (d, J = 2.4 Hz, 1H), 7.66 (d, J = 8.0 Hz, 2H), 7.58–7.54 (m, 1H), 7.45–7.44 (m, 1H), 7.30 (d, J = 8.0 Hz, 2H), 7.14–7.12 (m, 1H), 4.64 (br s, 4H), 3.22 (t, J = 4.8 Hz, 4H), 2.39 (s, 3H). MS (ESI) *m*/*z* 452 [C₂₂H₂₁N₅O₂S₂ + H]⁺.

2-(Thiophen-2-yl)-4-(4-tosylpiperazin-1-yl)pyrido[**2,3-***d*]**pyrimidine** (73). Yield 60%. ¹H NMR (400 MHz, CDCl₃) δ 8.99 (d, J = 2.8 Hz, 1H), 8.13–8.06 (m, 2H), 7.66 (d, J = 8.0 Hz, 2H), 7.50 (d, J = 4.8 Hz, 1H), 7.34–7.28 (m, 3H), 7.15 (t, J = 4.0 Hz, 1H), 3.96 (t, J = 4.8 Hz, 4H), 3.23 (t, J = 4.8 Hz, 4H), 2.41 (s, 3H). MS (ESI) m/z 452 [C₂₂H₂₁N₅O₂S₂ + H]⁺.

2-(Thiophen-2-yl)-4-(4-tosylpiperazin-1-yl)pyrimidine (74). Yield 40%. ¹H NMR (400 MHz, DMSO- d_{6}) δ 8.17 (d, J = 8.0 Hz, 1H), 7.80 (d, J = 3.2 Hz, 1H), 7.64–7.61 (m, 3H), 7.42 (d, J = 8.0 Hz, 2H), 7.12 (t, J = 4.0 Hz, 1H), 6.64 (d, J = 8.0 Hz, 1H), 3.77 (br s, 4H), 2.94 (t, J = 4.6 Hz, 4H), 2.36 (s, 3H). MS (ESI) m/z 400 [C₁₉H₂₀-N₄O₂S₂ + H]⁺.

4,5-Dimethyl-2-(thiophen-2-yl)-6-(4-tosylpiperazin-1-yl)pyrimidine (76). Yield 21%. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, J = 3.2 Hz, 1H), 7.68 (d, J = 8.4 Hz, 2H), 7.39–7.33 (m, 3H), 7.09 (t, J = 4 Hz, 1H), 3.46 (t, J = 4.8 Hz, 4H), 3.16 (t, J = 4.0 Hz, 4H), 2.43 (s, 3H), 2.41 (s, 3H), 2.08 (s, 3H). MS (ESI) m/z 429 [C₂₁H₂₄-N₄O₂S₂ + H]⁺.

Preparation of 2-Chloro-6-(4-tosylpiperazin-1-yl)-9H-purine (19b). *N*,*N*-Diisopropylethylamine (0.92 mL, 3.28 mmol) and piperizine 17a (761 mg, 3.174 mmol) were added to a stirring solution of dichloride 18b (500 mg, 2.64 mmol) in NMP (6 mL) at 0 °C. After stirring for 3 h at room temperature, the reaction mixture was diluted with water (20 mL) and extracted with EtOAc (3×15 mL). The combined organic layers were washed with water (3×10 mL) and brine (3×10 mL), dried over Na₂SO₄, and filtered. The filtrate was concentrated under reduced pressure. The resulting solids were washed with methanol to afford purine 19b (600 mg, 51%) as an off-white solid. ¹H NMR (400 MHz, CDCl₃) δ 13.21 (br s, 1H), 8.13 (s, 1H), 7.61 (d, *J* = 8.0 Hz, 2H), 7.40 (d, *J* = 8.0 Hz, 2H), 7.33 (br s, 4H), 2.99 (s, 4H), 2.49 (s, 3H). MS (ESI) *m*/*z* 393 [C₁₆H₁₇N₆O₂S]⁺.

Preparation of [2-Chloro-6-(4-tosylpiperazin-1-yl)-9*H*-purin-9-yl]methyl Pivalate (19c). Chloromethylpivalate (22, 0.1 mL, 0.56 mmol) and K₂CO₃ (43 mg, 0.36 mmol) were added to a stirring solution of purine 19b (100 mg, 0.25 mmol) in DMF (2 mL) at room temperature. After stirring for 3 h at room temperature, the reaction mixture was diluted with water (5 mL) and extracted with EtOAc (3×5 mL). The combined organic layers were washed with water (3×5 mL) and brine (3×5 mL), dried over Na₂SO₄, and filtered. The filtrate was concentrated under reduced pressure. The crude residue was purified by trituration with CH₂Cl₂/hexanes to afford pivalate 19c (110 mg, 63%) as an off-white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.22 (s, 1H), 7.56 (d, *J* = 8.0 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 5.99 (s, 2H), 4.40 (br s, 2H), 3.90 (br s, 2H), 2.96 (s, 4H), 2.43 (s, 9H), 2.30 (s, 3H). MS (ESI) *m*/*z* 507 [C₂₂H₂₇ClN₆O₄S]⁺.

Preparation of [2-(Thiophen-2-yl)-6-(4-tosylpiperazin-1-yl)-9*H***-purin-9-yl]methyl Pivalate (21bb).** 2-Thiophene boronic acid (20a, 75 mg, 0.59 mmol) and Cs₂CO₃ (256 mg, 078 mmol) were added to a stirring solution of chloride **19c** (200 mg, 0.39 mmol) in DMF (6 mL). The reaction mixture was purged with argon for 20 min, and Pd(PPh₃)₄ (46 mg, 0. 03 mmol) was added. The reaction mixture was heated under microwave conditions for 1 h (temp = 100 °C, pressure = 200 psi, power = 150 W). After cooling to room temperature, the reaction mixture was diluted with water (10 mL) and extracted with EtOAc (3 × 10 mL). The combined organic layer was washed with water (3 × 10 mL) and brine (3 × 10 mL), dried over Na₂SO₄, and filtered. The filtrate was concentrated under reduced pressure. The crude residue was

real real real real real real real real

compd	formula	calcd for formula + H^+	HRMS found	compd	formula	calcd for formula $+ H^+$	HRMS found
2	$C_{17}H_{18}N_4S$	311.1331	311.1325	26bf	$C_{25}H_{24}N_4O_4S_2$	509.1318	509.1327
3	$C_{18}H_{20}N_4S$	325.1487	325.1487	26bg	$C_{22}H_{19}N_5O_4S_2$	482.0957	482.0957
4	$C_{19}H_{22}N_4S$	339.1644	339.1637	26bh	$C_{22}H_{19}N_5O_4S_2$	482.0957	482.0957
5	C18H18N4OS	339.12797	339.1275	26bi	$C_{22}H_{19}N_5O_4S_2$	482.0957	482.0951
6	$C_{22}H_{19}FN_4S$	391.13927	391.1388	26bj	$C_{23}H_{19}N_5O_2S_2$	462.1059	462.1054
7	$C_{22}H_{19}N_4FS$	391.1393	391.1388	26bk	$C_{23}H_{19}N_5O_2S_2$	462.1059	462.1056
6	$C_{22}H_{20}N_4OS$	389.1436	389.1431	26bl	$C_{23}H_{19}N_5O_2S_2$	462.1059	462.1055
8	C ₂₃ H ₂₂ N ₄ OS	403.1593	403.1586	26bm	$C_{21}H_{19}N_5O_2S_2$	438.1059	438.1056
9	$C_{22}H_{20}N_4O_2S_2$	437.1106	437.1106	26bn	$C_{19}H_{17}N_5O_2S_3$	444.0623	444.0620
10	$C_{22}H_{19}N_4O_2S_2Cl$	471.0716	471.0719	26bo	$C_{20}H_{18}N_4O_2S_3$	443.0670	443.0665
11	$C_{25}H_{23}N_5O_2S$	458.1651	458.1645	26bp	$C_{20}H_{18}N_4O_2S_3$	443.0670	443.0670
12	$C_{25}H_{23}N_5O_4S$	490.1549	490.1542	26bq	$C_{23}H_{22}N_4O_2S_2$	451.1263	451.1262
13	$C_{26}H_{24}N_4O_4S$	489.1597	489.1592	26br	$C_{26}H_{26}N_4O_2S_2$	491.1576	491.1579
14	$C_{26}H_{22}N_4O_2S_2$	487.1263	487.1255	26bs	$C_{24}H_{22}N_4O_4S_2$	495.1161	495.1157
21aa	$C_{25}H_{24}N_4O_2S$	445.1698	445.1701	26bt	$C_{25}H_{25}N_5O_3S_2$	508.1477	508.1476
21ab	$C_{28}H_{30}N_4O_2S$	487.2168	487.2168	26bu	$C_{27}H_{28}N_4O_3S_2$	521.1681	521.1682
21ac	$C_{25}H_{24}N_4O_3S$	461.1648	461.1642	25bv	$C_{25}H_{21}N_5O_2S_2$	488.1215	488.1211
21ad	$C_{26}H_{26}N_4O_3S$	4/5.1804	4/5.1804	26bw	$C_{26}H_{21}N_4O_2S_2CI$	521.08/3	521.08/1
21ae	$C_{25}H_{21}N_4O_3F_3S$	515.1365	515.1362	260X	$C_{26}H_{22}N_4O_2S_2$	487.1263	487.1259
21ai	$C_{28}H_{30}N_4O_4S$	519.2066	519.2067	260y 26ba	$C_{23}H_{20}N_4O_4S_2$	481.1005	481.1001
21an 21ab	$C_{24}\Pi_{21}\Gamma N_4 O_2 S$	449.1440	449.1450	2002 26aa	$C_{25}\Pi_{21}N_5O_2S_2$	488.1213	400.1209
21an 21ai	$C_{24}H_{21}N_4O_2SCI$	405.1152	405.1154	200a	$C_{23}H_{19}N_5O_2S_3$	494.0779	494.0777
21ai 21ai	$C_{24}H_{21}N_4O_2SCI$	405.1152	405.1151	2000	$C_{17}H_{18}N_4O_2S_2$	373.0930	373.0944
21aj 21ak	$C_{24}\Pi_{21}\Pi_{4}O_{2}SCI$	500.0647	511.0620	2000 26 ad	$C_{19}\Pi_{22}\Pi_{4}O_{2}S_{2}$	403.1203	403.1202
21ak 21al	$C_{24}\Pi_{21}\Pi_4O_2SBI$	509.0047	511.0629	20 cu 28	$C_{17}H_{15}N_4O_2\Gamma_3S_2$	429.0007	429.0071
21ai 21am	$C_{24}H_{21}N_4O_2SDI$	499 1416	499 1421	20	$C_{25}H_{24}N_4O_{25}$	401 1436	401 1436
21an 21ao	CacHaiN4O2F3S	499 1416	499 1422	339	CatHacN4O3	399 1855	399 1853
21a0 21an	C25H21N4O2F 35	503 1753	503 1749	35a	$C_{21}H_{26}N_4O_2S$	453 1419	453 1414
21ag	$C_{26}H_{24}N_4O_2S$	473 1648	473 1652	35h	C24H26N4O2S2	467 1576	467 1571
21ar	$C_{24}H_{23}N_5O_4S_2$	510.1270	510.1271	35c	$C_{24}H_{24}N_4O_2S_2$	465.1419	465.1420
21as	C ₂₅ H ₂₁ N ₅ O ₂ S	456.1494	456.1492	38	C ₂₄ H ₂₃ N ₃ O ₂ S ₂	450.1310	450.1308
21at	$C_{25}H_{21}N_5O_2S$	456.1494	456.1492	39	$C_{19}H_{21}N_3O_2S$	356.1433	356.1431
21au	$C_{24}H_{21}N_5O_4S$	476.1393	476.1385	51	$C_{24}H_{23}N_3O_2S_2$	450.1310	450.1303
21av	C ₂₄ H ₂₁ N ₅ O ₄ S	476.1393	476.1395	56a	$C_{24}H_{24}N_4O_2S_2$	465.1419	465.1416
21aw	C ₂₄ H ₂₁ N ₅ O ₄ S	476.1393	476.1395	56b	$C_{22}H_{21}N_5O_2S_2$	452.1215	452.1204
21ax	$C_{28}H_{24}N_4O_2S$	481.1698	481.1698	56c	$C_{22}H_{21}N_5O_2S_2$	452.1215	452.1211
21ay	$C_{28}H_{28}N_4O_2S$	485.2011	485.2019	56d	$C_{22}H_{21}N_5O_3S$	436.1444	436.1433
21az	$C_{27}H_{26}N_4O_2S$	471.1855	471.1856	56e	$C_{23}H_{22}N_4O_3S$	435.1491	435.1491
21ba	$C_{26}H_{24}N_4O_2S$	457.1698	457.1695	56f	$C_{24}H_{23}N_5O_2S$	446.1651	446.1642
21bb	$C_{26}H_{30}N_6O_4S_2$	555.1848	555.1848	56g	$C_{24}H_{23}N_5O_2S$	446.1651	446.1639
21bc	$C_{20}H_{20}N_6O_2S_2$	441.1168	441.1167	56h	$C_{23}H_{22}N_6O_2S$	447.1603	447.1585
24	$C_{21}H_{24}N_4O_2S$	397.1698	397.1694	56i	$C_{23}H_{22}N_6O_2S$	447.1603	447.1596
26aa	$C_{22}H_{20}N_4O_2S_2$	437.1106	437.1103	56i	$C_{23}H_{22}N_6O_2S$	437.1103	447.1597
26ab	$C_{23}H_{22}N_4O_2S_2$	451.1263	451.1258	56k	$C_{23}H_{22}N_6O_2S$	447.1603	447.1589
26ac	$C_{23}H_{22}N_4O_2S_2$	451.1263	451.1255	561	$C_{26}H_{26}N_4O_3S$	475.1804	475.1798
26ad	$C_{23}H_{22}N_4O_2S_2$	451.1263	451.1261	56m	$C_{24}H_{20}N_4O_2FSBr$	527.0553	529.0529
26ae	$C_{24}H_{24}N_4O_2S_2$	465.1419	465.1418	56n	$C_{24}H_{20}N_4O_2SClBr$	543.0257	545.0226
26af	$C_{24}H_{24}N_4O_2S_2$	465.1419	465.1415	560	$C_{24}H_{20}N_4O_2SCl_2$	499.0763	499.0757
26ag	$C_{26}H_{28}N_4O_2S_2$	493.1732	493.1/36	57	$C_{20}H_{19}N_5O_2S$	394.1338	394.1322
26an	$C_{26}H_{28}N_4O_2S_2$	493.1732	493.1729	59	$C_{20}H_{21}N_5O_3S$	412.1444	412.1424
2681	$C_{23}H_{22}N_4O_3S_2$	467.1212	467.1209	6U (1	$C_{21}H_{22}N_4O_4S$	427.1440	427.1432
20ai	$C_{23}\Pi_{22}\Pi_4 O_3 S_2$	407.1212	407.1209	62	$C_{21}\Pi_{22}N_4O_3S$	411.1491	411.1404
20ak 26al	$C_{23}\Pi_{22}\Pi_{4}O_{3}S_{2}$	407.1212	521.0035	63	$C_{21}H_{22}N_4O_2S$	360 1385	360 1384
2041 26am	$C_{23}\Pi_{19}\Pi_{4}O_{3}\Pi_{3}O_{2}$	J21.0929 407 1318	407 1320	68	$C_{19}\Pi_{20}\Pi_{4}O_{2}S$	485 1760	485 1758
20am 26an	$C_{24}\Pi_{24}\Pi_{4}O_{4}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2$	457.1318	457.1320	60	$C_{26}\Pi_{24}\Pi_{6}O_{2}S$	550 1947	550 1046
20dii 26ac	$C_{22}H_{19}H_{4}O_{2}S_{2}$	455.1012	455 1010	70	CapHarN-0 S	5/0 2106	5/0 2101
2040 26an	$C_{22}H_{19}N_{4}O_{2}FS_{2}$	455 1012	455 1012	71	$C_{28}T_{32}T_{6}C_{2}S_{2}$	450 1310	450 1311
20ap 269a	$C_{22}H_{19}H_{4}O_{2}H_{52}$	473 0018	473 0014	72	$C_{24}H_{23}H_{3}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2}O_{2$	450 1310	450 1312
26ar	$C_{22}H_{18}H_{4}O_{2}H_{2}O_{2}$	471 0716	471 0712	73	$C_{24} + 1_{23} + 3_{3} + 3_{2} + 3_$	452 1215	452 1217
26as	$C_{22}H_{10}N_4O_2S_2C_1$	471.0716	471 0715	74	$C_{22}H_{21}N_{2}O_{2}S_{2}$	452 1215	452 1219
26at	$C_{22}H_{18}N_4O_2S_2Cl_2$	505.0327	505.0329	75	$C_{10}H_{20}N_4O_2S_2$	401.1106	401.1110
26au	$C_{22}H_{10}N_4O_2S_2Br$	515.0211	517.0190	76	C18H18N4O2S2	387.0950	387,0944
26av	$C_{22}H_{10}N_4O_2S_2Br$	515.0211	517.0186	77	$C_{21}H_{24}N_4O_2S_2$	429,1419	429,1423
26aw	$C_{22}H_{10}N_4O_2S_2Br$	515.0211	517.0191	78	$C_{22}H_{18}N_4O_2FS_2C1$	489.0622	489.0619
26ax	$C_{23}H_{19}N_4O_2F_3S_2$	505.0980	505.0975	79	$C_{23}H_{18}N_4O_2F_3S_2C$	539.0590	539.0586

 Table 7.
 Continued

compd	formula	calcd for formula $+ H^+$	HRMS found	compd	formula	calcd for formula $+ H^+$	HRMS found
26ay	C ₂₃ H ₁₉ N ₄ O ₂ F ₃ S ₂	505.0980	505.0976	80	C24H20N4O2FSCl	483.1058	483.1054
26az	$C_{23}H_{19}N_4O_2F_3S_2$	505.0980	505.0981	81	C25H22N4O2FSCl	497.1214	497.1213
26ba	$C_{24}H_{22}N_4O_3S_2$	479.1212	479.1199	82	$C_{24}H_{19}N_4O_2FSCl_2$	517.0668	517.0667
26bb	$C_{24}H_{22}N_4O_3S_2$	479.1212	479.1213	83	$C_{24}H_{19}N_4O_2F_2SCl$	501.0964	501.0962
26bc	$C_{24}H_{22}N_4O_3S_2$	479.1212	479.1219	84	C25H22ClFN4O2S	479.1214	497.1219
27bd	$C_{22}H_{21}N_5O_4S_3$	516.0834	516.0830	85	$C_{24}H_{20}N_4O_2FSCl$	483.1058	483.1055
26de	$C_{25}H_{24}N_4O_4S_2\\$	509.1318	509.1320	86	$C_{20}H_{18}N_4O_3S$	395.1178	395.1173

Table 8. $\Delta T_{\rm m}$ Tabulated vs Compound Concentration^{*a*}

concentration							
(μM)	26ad	14	26bs	26ai	62	DNJ 87	isofagomine 1
600	*		24.3	*			
500	*		23.4	7.69			8.75
400	*	19.94	22.81	8.09			9.56
300		19.82	22.8	7.48			8.98
200	11.02	17.31	20.73	6.86	-0.3		8.25
100	9.89	14.51	19.27	3.97	0.42		7.94
50	5.18	10.8	13.35	-0.76	0.43	2.58	6.72
25	0.84	4.35	11.67	-0.01	0.29	1.79	5.5
10	-1.4	1.6	5.39		0.88	0.84	
1	-0.09	-0.19	0.24	0.55	-0.26	-0.2	1.16
0.1	0.03	-1.33	0.37	0.6	0.5	0.72	0.4
0	0.28	-1.27	0.07	0.59	0.5	0.09	-0.12

^a Empty cells indicate undetectable melt transition. * indicates that compound was observed to have precipitated out of solution.

purified by silica-gel column chromatography (20% EtOAc in hexanes) to afford purine **21bb** (70 mg, 35%) as an off-white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.92 (s, 2H), 7.65 (d, J = 8.0 Hz, 2H), 7.39 (d, J = 4.0 Hz, 1H), 7.30 (d, J = 8.0 Hz, 2H), 7.10 (t, J = 8.0 Hz, 1H), 6.12 (s, 2H), 4.45 (br s, 4H), 3.16 (t, J = 4.0 Hz, 4H), 2.39 (s, 3H), 1.16 (s, 9H). MS (ESI) m/z 555 [C₂₆H₃₀N₆O₄S₂ + H]⁺.

Preparation of 2-(Thiophen-2-yl)-6-(4-tosylpiperazin-1-yl)-9Hpurine (21bc). A 3 N sodium hydroxide solution (0.2 mL) was added to a stirring solution of pivalate **21bb** (100 mg, 0.18 mmol) in a mixture of THF/MeOH (2 mL:1 mL) at room temperature. After stirring for 3 h at room temperature, the reaction mixture was concentrated under reduced pressure. The crude residue was purified by silica-gel column chromatography (1% MeOH in CH₂Cl₂) to afford purine **21bc** (55 mg, 45%) as an off-white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 13.11 (s, 1H), 8.10 (s, 1H), 7.76 (d, *J* = 3.2 Hz, 1H), 7.63–7.58 (m, 3H), 7.39 (d, *J* = 8 Hz, 2H), 7.11 (t, *J* = 4.4 Hz, 1H), 4.36 (br s, 4H), 2.99 (s, 4H), 2.33 (s, 3H). MS (ESI) *m/z* 441 [C₂₀H₂₀N₆O₂S₂ + H]⁺.

Preparation of *tert*-Butyl 4-(2-Chloroquinazolin-4-yl)piperazine-1-carboxylate (23). *N*,*N*-Diisopropylethylamine (5.2 mL, 30.14 mmol) and Boc-piperzine 15 (3.08 g, 16.87 mmol) were added to a stirring solution of 2,4-dichloroquinazoline (18a, 3.00 g, 15.07 mmol) in NMP (30 mL) at 0 °C. After stirring for 3 h at room temperature, the reaction mixture was diluted with ice-cold water (50 mL) and the resulting precipitate was filtered. The filter cake was washed with water (3 × 20 mL) and dried to afford 2-chloroquinazoline 23 (4.50 g, 63%) as an off-white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (t, *J* = 8.0 Hz, 2H), 7.75 (t, *J* = 8.0 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 1H), 3.85–3.84 (m, 4H), 3.66 (t, *J* = 4.4 Hz, 4H), 1.50 (s, 9H). MS (ES1) *m*/z 349 [C₁₇H₂₁ClN₄O₂ + H]⁺.

Preparation of *tert*-Butyl 4-[2-(Thiophen-2-yl)quinazolin-4-yl]piperazine-1-carboxylate (24). 2-Thiophene boronic acid 20a (4.39 g, 34.38 mmol) and K_2CO_3 (9.50 g, 68.76 mmol) were added to a stirring solution of chloroquinazoline 23 (8.00 g, 22.92 mmol) in 1,4-dioxane and water (110 mL/15 mL). The reaction mixture was purged with argon gas for 20 min, and Pd(PPh_3)_2Cl_2 (1.60 g, 2.29 mmol) was added. The reaction mixture was heated at reflux for 16 h under an argon atmosphere. The reaction mixture was cooled to room temperature, diluted with water (100 mL), and extracted with EtOAc (3×30 mL). The combined organic layers were washed with water (3×100 mL), dried over Na₂SO₄ and then filtered, and the filtrate was concentrated under reduced pressure. The resulting crude residue was purified by silica-gel column chromatography (20% EtOAc in hexanes) to afford thiophene **24** (6.00 g, 65%) as an off-white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 4.0 Hz, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.85 (d, J = 8.0 Hz, 1H), 7.72 (t, J = 8.0 Hz, 1H), 7.46 (d, J = 4.0 Hz, 1H), 7.40 (t, J = 8.0 Hz, 1H), 7.15 (t, J = 4.0 Hz, 2H), 3.79 (br s, 4H), 3.68 (br s, 4H), 1.50 (s, 9H). MS (ESI) m/z 397 [C₂₁H₂₄N₄O₂S + H]⁺.

Preparation of 4-(Piperazin-1-yl)-2-(thiophen-2-yl)quinazoline (25). Hydrochloric acid (20% in 1,4-dioxane, 6 mL) was added to a stirring solution of carbamate 24 (3.50 g, 8.83 mmol) in CH₂Cl₂ (20 mL) at 0 °C. After stirring for 16 h at room temperature, the precipitated solids were filtered and the filter cake was dissolved in water (30 mL). The resulting aqueous solution was washed with CH_2Cl_2 (2 × 30 mL), cooled to 0 °C, and basified to pH 12 with a saturated aqueous NaHCO₃ solution. The aqueous solution was then extracted with CH₂Cl₂ $(2 \times 30 \text{ mL})$, and the combined organic layers were dried over Na₂SO₄, filtered, and concentrated under reduced pressure to afford the secondary amine 25 (1.80 g, 62%) as an off-white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (s, 1H), 7.90–7.84 (m, 2H), 7.69 (t, J = 8.0 Hz, 1H), 7.45 (d, J = 4.0 Hz, 1H), 7.37 (t, J = 8.0 Hz, 1H), 7.16 (d, J = 4.0 Hz, 1H), 3.81 (s, 4H), 3.70 (s, 1H), 3.11 (s, 4H). MS (ESI) m/z 297 $[C_{16}H_{16}N_4S + H]^+$

General Procedure for the Synthesis of Sulfonamide Analogues (26). *N*,*N*-Diisopropylethylamine (1.34 mmol) and a sulfonyl chloride (0.74 mmol) were added to a stirring solution of amine 25 (0.67 mmol) in NMP (3 mL) at 0 °C. After stirring for 3 h at room temperature, the reaction mixture was diluted with water (10 mL) and extracted with EtOAc (3×5 mL). The combined organic layers were washed with water (3×10 mL), dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The crude residue was purified by silica-gel column chromatography to afford sulphonamide 26 as anoff-white solid.

4-(4-(4-Chlorophenylsulfonyl)piperazin-1-yl)-2-(thiophen-2-yl)quinazoline (10). Yield 75%. ¹H NMR (400 MHz, CDCl₃) δ 7.90 (d, J = 8.0 Hz, 2H), 7.80–7.69 (m, 7H), 7.46–7.43 (m, 1H), 7.17 (t, J = 4.4 Hz, 1H), 3.82 (br s, 4H), 3.20 (br s, 4H). MS (ESI) m/z471 [C₂₂H₁₉ClN₄O₂S₂]⁺.

4-(4-(2-Methylphenylsulfonyl)piperazin-1-yl)-2-(thiophen-2-yl)quinazoline (26ab). Yield 29%. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (br s, 1H), 7.97–7.90 (m, 2H), 7.79 (d, J = 8.0 Hz, 1H), 7.72 (t, J = 6.0 Hz, 1H), 7.51–7.45 (m, 2H), 7.42–7.34 (m, 3H), 7.15 (t, J = 4.0 Hz, 1H), 3.87 (t, J = 6.0 Hz, 4H), 3.45 (t, J = 6.0 Hz, 4H), 2.69 (s, 3H). MS (ESI) m/z 451 [C₂₃H₂₂N₄O₂S₂ + H]⁺.

4-(4-(3-Methylphenylsulfonyl)piperazin-1-yl)-2-(thiophen-2-yl)quinazoline (26ac). Yield 29%. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 2.8 Hz, 1H), 7.90 (d, J = 8.4 Hz, 1H), 7.75–7.69 (m, 2H), 7.61 (s, 2H), 7.46–7.16 (m, 4H), 7.15 (t, J = 4.4 Hz, 1H), 3.92 (t, J = 4.4 Hz, 4H), 3.28 (t, J = 4.8 Hz, 4H), 2.44 (s, 3H). MS (ESI) m/z 451 [C₂₃H₂₂N₄O₂S₂ + H]⁺.

4-(4-(4-Methylphenylsulfonyl)piperazin-1-yl)-2-(thiophen-2-yl)quinazoline (26ad). Yield 70%. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 4.0 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.74–7.67 (m, 4H), 7.45 (d, J = 4.8 Hz, 1H), 7.39–7.33 (m, 3H), 7.15 (t, J = 4.0Hz), 3.91 (t, J = 8.0 Hz, 4H), 3.25 (t, J = 8.0 Hz, 4H), 2.41 (s, 3H). MS (ESI) m/z 451 [C₂₃H₂₂N₄O₂S₂ + H]⁺.

4-(4-(3,5-Dimethylphenylsulfonyl)piperazin-1-yl)-2-(thiophen-2-yl)quinazoline (26ae). Yield 64%. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 3.2 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.76–7.69 (m, 2H), 7.46 (d, J = 4.8 Hz, 1H), 7.40–7.36 (m, 3H), 7.22 (s, 1H), 7.15 (t, J = 4.4 Hz, 1H), 3.92 (t, J = 4.8 Hz, 4H), 3.26 (t, J = 4.4 Hz, 4H), 2.39 (s, 6H). MS (ESI) *m*/*z* 465 [C₂₄H₂₄N₄O₂S₂ + H]⁺.

4-(4-(2,4-Dimethylphenylsulfonyl)piperazin-1-yl)-2-(thiophen-2-yl)quinazoline (26af). Yield 62%. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 3.2 Hz, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.76–7.69 (m, 2H), 7.46 (d, J = 4.8 Hz, 1H), 7.40–7.362 (m, 3H), 7.22 (s, 1H), 7.15 (t, J = 4.4 Hz, 1H), 3.92 (t, J = 4.8 Hz, 4H), 3.26 (t, J = 4.4 Hz, 4H), 2.39 (s, 6H). MS (ESI) *m*/*z* 465 [C₂₄H₂₄N₄O₂S₂ + H]⁺.

4-(4-(3-*tert***-Butylphenylsulfonyl)piperazin-1-yl)-2-(thiophen-2-yl)quinazoline (26ag).** Yield 66%. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 4.0 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.79 (s, 1H), 7.75–7.68 (m, 2H), 7.62 (t, J = 8.0 Hz, 2H), 7.49–7.44 (m, 2H), 7.37 (t, J = 8.0 Hz, 1H), 7.14 (d, J = 4.0 Hz, 1H), 3.92 (t, J = 4.0 Hz, 4H), 3.26 (t, J = 4.0 Hz, 4H), 1.34 (s, 9H). MS (ESI) m/z 481 [C₂₆H₂₈N₄O₂S₂ + H]⁺.

4-(4-(4-*tert***-Butylphenylsulfonyl)piperazin-1-yl)-2-(thiophen-2-yl)quinazoline** (26ah). Yield 63%. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 4.0 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.57–7.68 (m, 4H), 7.55 (d, J = 8.0 Hz, 2H), 7.46 (d, J = 4.0 Hz, 1H), 7.37 (t, J = 8.0 Hz, 1H), 7.27 (s, 1H), 7.14 (t, J = 4.0 Hz, 1H), 3.91 (t, J = 4.0 Hz, 4H), 3.28 (t, J = 4.0 Hz, 4H), 1.33 (s, 9H). MS (ESI) m/z 481 [C₂₆H₂₈N₄O₂S₂ + H]⁺.

4-(4-(2-Methoxyphenylsulfonyl)piperazin-1-yl)-2-(thiophen-2-yl)quinazoline (26ai). Yield 63%. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 4.0 Hz, 1H), 7.94–7.89 (m, 2H), 7.79 (d, J = 4.0 Hz, 1H), 7.71 (t, J = 8.0 Hz, 1H), 7.53 (t, J = 8.0 Hz, 1H), 7.45 (d, J =4.0 Hz, 1H), 7.39 (t, J = 8.0 Hz, 1H), 7.14 (t, J = 4.0 Hz, 1H), 7.07–7.00 (m, 2H), 3.92 (s, 3H), 3.90 (t, J = 4.0 Hz, 4H), 3.49 (t, J = 4.0 Hz, 4H). MS (ESI) m/z 467 [C₂₃H₂₂N₄O₃S₂ + H]⁺.

4-(4-(3-Methoxyphenylsulfonyl)piperazin-1-yl)-2-(thiophen-2-yl)quinazoline (26aj). Yield 38%. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (br s, 1H), 7.91(d, J = 8.0 Hz, 1H), 7.75–7.69 (m, 2H), 7.48–7.44 (m, 2H), 7.38 (t, J = 6.0 Hz, 2H), 7.30 (s, 1H), 7.16–7.12 (m, 2H), 3.92 (s, 4H), 3.86 (s, 3H), 3.29 (t, J = 4.0 Hz, 4H). MS (ESI) m/z 467 [C₂₃H₂₂N₄O₃S₂ + H]⁺.

4-(4-(A-Methoxyphenylsulfonyl)piperazin-1-yl)-2-(thiophen-2-yl)quinazoline (26ak). Yield 57%. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (br s, 1H), 7.90 (d, J = 4.0 Hz, 1H), 7.75–7.69 (m, 4H), 7.46 (d, J = 4.0 Hz, 1H), 7.37 (t, J = 6.0 Hz, 1H), 7.15 (t, J = 4.0 Hz, 1H), 7.01 (d, J = 4.0 Hz, 1H), 3.92 (s, 4H), 3.86 (s, 3H), 3.25 (t, J = 6.0 Hz, 4H). MS (ESI) m/z 467 [C₂₃H₂₂N₄O₃S₂ + H]⁺.

4-(4-(2-Fluorophenylsulfonyl)piperazin-1-yl)-2-(thiophen-2-yl)quinazoline (26an). Yield 71%. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 3.2 Hz, 1H), 7.91–7.88 (m, 2H), 7.77 (d, J = 8.0 Hz, 1H), 7.72 (t, J = 7.6 Hz, 1H), 7.62–7.57 (m, 1H), 7.45 (d, J = 4.8 Hz, 1H), 7.39 (t, J = 7.6 Hz, 1H), 7.33–7.24 (m, 2H), 7.15 (t, J = 4.4 Hz, 1H), 3.91 (t, J = 4.8 Hz, 4H), 3.47 (t, J = 4.4 Hz, 4H). MS (ESI) m/z 455 $[C_{22}H_{19}FN_4O_2S_2 + H]^+$.

4-(4-(3-Fluorophenylsulfonyl)piperazin-1-yl)-2-(thiophen-2-yl)quinazoline (26ao). Yield 70%. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, J = 3.2 Hz, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.75–7.69 (m, 2H), 7.61–7.51 (m, 3H), 7.46 (d, J = 4.8 Hz, 1H), 7.40–7.27 (m, 2H), 7.15 (t, J = 4.0 Hz, 1H), 3.91 (t, J = 4.4 Hz, 4H), 3.30 (t, J = 4.4 Hz, 4H). MS (ESI) m/z 455 [C₂₂H₁₉FN₄O₂S₂ + H]⁺.

4-(4-(4-Fluorophenylsulfonyl)piperazin-1-yl)-2-(thiophen-2-yl)quinazoline (26ap). Yield 67%. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 4.0 Hz, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.84–7.81 (m, 2H), 7.75–7.69 (m, 2H), 7.46 (t, J = 4.0 Hz, 1H), 7.38 (t, J = 8.0 Hz, 1H), 7.27–7.22 (m, 2H), 7.15 (t, J = 4.0 Hz, 1H), 3.91 (t, J = 4.0 Hz, 4H), 3.27 (t, J = 4.0 Hz, 4H). MS (ESI) m/z 455 [C₂₂H₁₉FN₄O₂S₂ + H]⁺.

4-(4-(2,4-Difluorophenylsulfonyl)piperazin-1-yl)-2-(thiophen-2-yl)quinazoline (26aq). Yield 68%. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, J = 4.0 Hz, 1H), 7.94–7.88 (m, 2H), 7.78 (d, J = 8.0 Hz, 1H), 7.72 (t, J = 8.0 Hz, 1H), 7.45 (d, J = 4.0 Hz, 1H), 7.40 (t, J = 8.0 Hz, 1H), 7.15 (t, J = 4.0 Hz, 1H), 7.05–6.95 (m, 2H), 3.92 (t, J = 4.0 Hz, 4H), 3.45 (t, J = 4.0 Hz, 4H). MS (ESI) m/z 473 [C₂₂H₁₈F₂N₄O₂S₂ + H]⁺.

4-(4-(2-Chlorophenylsulfonyl)piperazin-1-yl)-2-(thiophen-2-yl)-quinazoline (26ar). Yield 67%. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 4.0 Hz, 1H), 8.01 (d, J = 2.8 Hz, 1H), 7.91 (d, J = 8.4 Hz), 7.80 (d, J = 8.0 Hz, 1H), 7.72 (t, J = 7.6 Hz, 1H), 7.56–7.38 (m, 5H), 7.15 (t, J = 4 Hz, 1H), 3.89 (t, J = 4.4 Hz, 4H), 3.57 (t, J = 4.8 Hz, 4H). MS (ESI) m/z 471 [C₂₂H₁₉ClN₄O₂S₂]⁺.

4-(4-(3-Chlorophenylsulfonyl)piperazin-1-yl)-2-(thiophen-2-yl)-quinazoline (26as). Yield 30%. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (br s, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.80 (s, 1H), 7.76–7.68 (m, 3H), 7.59 (d, J = 8.0 Hz, 1H), 7.53–7.46 (m, 2H), 7.39 (t, J = 8.0 Hz, 1H), 7.15 (br s, 1H), 3.92 (br s, 4H), 3.30 (br s, 4H). MS (ESI) m/z 471 [C₂₂H₁₉ClN₄O₂S₂]⁺.

4-(4-(3,5-Dichlorophenylsulfonyl)piperazin-1-yl)-2-(thiophen-2-yl)quinazoline (26at). Yield 59%. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 3.6 Hz, 1H), 7.92 (d, J = 8.4 Hz, 1H), 7.77–7.70 (m, 2H), 7.67 (s, 2H), 7.59 (s, 1H), 7.46 (d, J = 5.2 Hz, 1H), 7.40 (t, J = 8.0 Hz, 1H), 7.15 (t, J = 4.4 Hz, 1H), 3.92 (t, J = 4.8 Hz, 4H), 3.32 (t, J = 4.4 Hz, 4H). MS (ESI) m/z 506 [C₂₂H₁₈Cl₂N₄O₂S₂ + H]⁺.

1-(2-(4-(2-(Thiophen-2-yl)quinazolin-4-yl)piperazin-1-ylsulfonyl)phenyl)ethanone (26ba). Yield 60%. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 3.2 Hz, 1H), 7.90 (d, J = 8.4 Hz, 2H), 7.73–7.69 (m, 2H), 7.62 (t, J = 7.2 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.45 (d, J = 5.2 Hz, 1H), 7.40–7.32 (m, 2H), 7.14 (t, J = 4.4 Hz, 1H), 3.87 (t, J = 4.4 Hz, 4H), 3.40 (t, J = 4.8 Hz, 4H), 2.47 (s, 3H). MS (ESI) m/z 479 [C₂₄H₂₂N₄O₃S₂ + H]⁺.

1-(3-(4-(2-(Thiophen-2-yl)quinazolin-4-yl)piperazin-1-ylsulfonyl)phenyl)ethanone (26bb). Yield 65%. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 3.2 Hz, 1H), 7.90 (d, J = 8.4 Hz, 2H), 7.73–7.69 (m, 2H), 7.62 (t, J = 7.2 Hz, 1H), 7.54 (t, J = 7.6 Hz, 1H), 7.45 (d, J = 5.2 Hz, 1H), 7.40–7.32 (m, 2H), 7.14 (t, J = 4.4 Hz, 1H), 3.87 (t, J = 4.4 Hz, 4H), 3.40 (t, J = 4.8 Hz, 4H), 2.47 (s, 3H). MS (ESI) m/z 479 [C₂₄H₂₂N₄O₃S₂ + H]⁺.

Ethyl 2-(4-(2-(Thiophen-2-yl)quinazolin-4-yl)piperazin-1-ylsulfonyl)benzoate (26be). Yield 45%. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 3.2 Hz, 1H), 7.89 (t, J = 8.8 Hz, 2H), 7.77 (d, J = 8.4 Hz, 1H), 7.71 (t, J = 7.2 Hz, 1H), 7.62 (t, J = 6.8 Hz, 2H), 7.51 (d, J = 8.4 Hz, 1H), 7.45 (d, J = 4.8 Hz, 1H), 7.38 (t, J = 8.0 Hz, 1H), 7.15 (t, J = 4.0 Hz, 1H), 4.44 (q, J = 7.2 Hz, 2H), 3.90 (t, J = 4.4 Hz, 4H), 3.48 (t, J = 4.4 Hz, 4H), 1.42 (t, J = 7.2 Hz, 3H). MS (ESI) m/z MS (ESI) m/z 509 [C₂₅H₂₄N₄O₄S₂ + H]⁺.

2-(4-(2-(Thiophen-2-yl)quinazolin-4-yl)piperazin-1-ylsulfonyl)benzonitrile (26bj). Yield 75%. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 8.0 Hz, 1H), 8.01 (d, J = 3.6 Hz, 1H), 7.91 (d, J = 8.0 Hz, 2H), 7.81–7.71 (m, 4H), 7.46–7.27 (m, 2H), 7.15 (t, J = 4.0 Hz, 1H), 3.93 (t, J = 4.8 Hz, 4H), 3.53 (t, J = 4.8 Hz, 4H). MS (ESI) m/z 462 [C₂₃H₁₉N₅O₂S₂ + H]⁺.

3-(4-(2-(Thiophen-2-yl)quinazolin-4-yl)piperazin-1-ylsulfonylbenzonitrile (26bk). Yield 70%. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (s, 1H), 8.03–8.01 (m, 2H), 7.90 (t, J = 8.0 Hz, 2H), 7.76–7.69 (m, 3H), 7.47 (d, J = 5.2 Hz, 1H), 7.42–7.37 (m, 1H), 7.15 (t, J = 4.0 Hz, 1H), 3.93 (t, J = 4H), 3.31 (t, J = 4.8 Hz, 4H). MS (ESI) m/z MS (ESI) m/z 462 [C₂₃H₁₉N₅O₂S₂ + H]⁺.

4-(4-(Pyridin-3-ylsulfonyl)piperazin-1-yl)-2-(thiophen-2-yl)quinazoline (26bm). Yield 55%. ¹H NMR (400 MHz, CDCl₃) δ 9.10 (s, 1H), 8.86 (s, 1H), 8.09 (d, J = 7.6 Hz, 1H), 8.01 (d, J = 2.4 Hz, 1H), 7.91 (d, J = 8.4 Hz, 1H), 7.74–7.70 (m, 2H), 7.53– 7.50 (m, 1H), 7.46 (d, J = 4.8 Hz, 1H), 7.39 (t, J = 7.6 Hz, 1H), 7.15 (t, J = 4.4 Hz, 1H), 3.92 (t, J = 4.8 Hz, 4H), 3.33 (t, J = 4.4 Hz, 4H). MS (ESI) m/z 438 [C₂₁H₁₉N₅O₂S₂ + H]⁺.

2-(4-(2-(Thiophen-2-yl)quinazolin-4-yl)piperazin-1-ylsulfonyl)thiazole (26bn). Yield 19%. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (dd, J = 6.0 Hz, 2H), 7.92 (d, J = 8.0 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.73 (t, J = 8.0 Hz, 1H), 7.66 (d, J = 4.0 Hz, 1H), 7.45 (d, J = 8.0 Hz, 1H), 7.41 (t, J = 8.0 Hz, 1H), 7.15 (t, J = 4.0 Hz, 1H), 3.94 (t, J = 4.0 Hz, 4H), 3.60 (t, J = 4.0 Hz, 4H). MS (ESI) m/z 444 [C₁₉H₁₇N₅O₂S₃ + H]⁺.

2-(Thiophen-2-yl)-4-(4-(thiophen-2-ylsulfonyl)piperazin-1-yl)quinazoline (26bo). Yield 38%. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.96 (s, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.77–7.70 (m, 2H), 7.47–7.46 (m, 2H), 7.39 (t, J = 8.0 Hz, 1H), 7.33 (d, J = 4.0 Hz, 1H), 7.15 (t, J = 4.0 Hz, 1H), 3.95 (s, 4H), 3.33 (s, 4H). MS (ESI) m/z 443 [C₂₀H₁₈N₄O₂S₃ + H]⁺.

2-(Thiophen-2-yl)-4-(4-(thiophen-3-ylsulfonyl)piperazin-1-yl)quinazoline (26bp). Yield 80%. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.96 (s, 1H), 7.91 (d, J = 8.0 Hz, 1H), 7.77–7.70 (m, 2H), 7.47–7.46 (m, 2H), 7.39 (t, J = 8.0 Hz, 1H), 7.33 (d, J = 4.0 Hz, 1H), 7.15 (t, J = 4.0 Hz, 1H), 3.93 (s, 4H), 3.31 (s, 4H). MS (ESI) m/z 443 [C₂₀H₁₈N₄O₂S₃ + H]⁺.

4-(4-(Benzylsulfonyl)piperazin-1-yl)-2-(thiophen-2-yl)quinazoline (**26bq).** Yield 50%. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 4.0 Hz, 1H), 7.92 (d, J = 8.0 Hz, 1H), 7.76–7.71 (m, 2H), 7.48 (d, J = 8.0 Hz, 1H), 7.42–7.38 (m, 6H), 7.17(d, J = 8.0 Hz, 1H), 4.28 (s, 2H), 3.78 (t, J = 4.0 Hz, 4H), 3.34 (t, J = 4.0 Hz, 4H). MS (ESI) m/z 451 [C₂₃H₂₂N₄O₂S₂ + H]⁺.

4-(4-(2,3-Dihydrobenzo[*b*][1,4]dioxin-6-ylsulfonyl)piperazin-1-yl)-2-(thiophen-2-yl)quinazoline (26bs). Yield 58%. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 4.0 Hz, 1H), 7.89 (d, *J* = 8.0 Hz, 1H), 7.76–7.69 (m, 2H), 7.46 (d, *J* = 4.0 Hz, 1H), 7.38 (t, *J* = 8.0 Hz, 1H), 7.32 (s, 1H), 7.31 (s, 1H), 7.15 (t, *J* = 4.0 Hz, 1H), 6.98 (d, J = 8 Hz, 1H), 4.30 (br s, 4H), 3.91 (t, *J* = 6.0 Hz, 4H), 3.25 (t, *J* = 6.0 Hz, 4H). MS (ESI) *m/z* 495 [C₂₄H₂₂N₄O₄S₂ + H]⁺.

4-Methyl-7-(4-(2-(thiophen-2-yl)quinazolin-4-yl)piperazin-1-ylsulfonyl)-3,4-dihydro-2*H***-benzo[***b***][1,4**]oxazine (26bt). Yield 14%. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (s, 1H), 7.89 (d, *J* = 8.0 Hz, 1H), 7.77–7.68 (m, 2H), 7.46 (d, *J* = 4.0 Hz, 1H), 7.38 (t, *J* = 8.0 Hz, 1H), 7.15 (s, 1H), 7.08 (d, *J* = 8.0 Hz, 1H), 6.98 (s, 1H), 6.84 (d, *J* = 8.0 Hz, 1H), 4.32 (s, 2H), 3.92 (s, 4H), 3.30–3.26 (m, 6H), 2.93 (s, 3H). MS (ESI) *m*/*z* 508 [C₂₅H₂₅N₅O₃S₂ + H]⁺.

4-(4-(2,2-Dimethylchroman-6-ylsulfonyl)piperazin-1-yl)-2-(thiophen-2-yl)quinazoline (26bu). Yield 34%. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 4.0 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.77–7.69 (m, 2H), 7.51 (d, J = 4.0 Hz, 2H), 7.45 (d, J = 4.0 Hz, 1H), 7.38 (t, J = 8.0 Hz, 1H), 7.15 (d, J = 4.0 Hz, 1H), 6.87 (d, J = 8.0 Hz, 1H), 3.92 (t, J = 4.0 Hz, 4H), 3.25 (t, J = 4.0 Hz, 4H) 2.82 (t, J = 4.0 Hz, 2H) 1.83 (t, J = 4.0 Hz, 2H), 1.34 (s, 6H). MS (ESI) m/z 521 [C₂₇H₂₈N₄O₃S₂ + H]⁺.

4-(4-(Quinolin-3-ylsulfonyl)piperazin-1-yl)-2-(thiophen-2-yl)quinazoline (26bv). Yield 34%. ¹H NMR (400 MHz, CDCl₃) δ 9.23 (s, 1H), 8.66 (s, 1H), 8.21 (d, J = 8.4 Hz, 1H), 7.99 (d, J =10.8 Hz, 2H), 7.93–7.87 (m, 2H), 7.73–7.68 (m, 3H), 7.43 (d, J = 5.2 Hz, 1H), 7.36 (t, J = 7.6 Hz, 1H), 7.12 (t, J = 4.0 Hz, 1H), 3.92 (t, J = 4.4 Hz, 4H), 3.40 (t, J = 4.4 Hz, 4H). MS (ESI) m/z487 [C₂₅H₂₁N₅O₂S₂ + H]⁺.

4-(4-(5-Chloronaphthalen-2-ylsulfonyl)piperazin-1-yl)-2-(**thiophen-2-yl)quinazoline (26bw).** Yield 63%. ¹H NMR (400 MHz, CDCl₃) δ 8.44 (d, J = 8.0 Hz, 1H), 8.39 (s, 1H), 7.98 (s, 1H), 7.93-7.86 (m, 3H), 7.75-7.66 (m, 3H), 7.54 (t, J = 6.0 Hz, 1H), 7.44 (d, J = 4.0 Hz, 1H), 7.35 (t, J = 4.0 Hz, 1H), 7.12 (t, J = 4.0 Hz, 1H), 3.91 (t, J = 4.0 Hz, 4H), 3.35 (t, J = 4.0 Hz, 4H). MS (ESI) m/z 521 [C₂₆H₂₁ClN₄O₂S₂]⁺.

4-(4-(Naphthalen-1-ylsulfonyl)piperazin-1-yl)-2-(thiophen-2-yl)quinazoline (26bx). Yield 21%. ¹H NMR (400 MHz, CDCl₃) δ 8.80 (d, J = 4.0 Hz, 1H), 8.28 (d, J = 8.0 Hz, 1H), 8.11 (d, J = 8.0 Hz, 1H), 7.96–7.87 (m, 3H), 7.67–7.72 (m, 3H), 7.57–7.62 (m, 2H), 7.42 (d, J = 4.0 Hz, 1H), 7.35 (t, J = 6.0 Hz, 1H), 7.12 (s, 1H), 3.84 (s, 4H), 3.46 (s, 4H). MS (ESI) m/z 487 [C₂₆H₂₂-N₄O₂S₂ + H]⁺.

4-(4-(Benzo[*d*][1,3]dioxol-5-ylsulfonyl)piperazin-1-yl)-2-(thiophen-2-yl)quinazoline (26by). Yield 16%. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 4.0 Hz, 1H), 7.90 (d, *J* = 8.0 Hz, 1H), 7.76–7.69 (m, 2H), 7.46 (d, *J* = 8.0 Hz, 1H), 7.40–7.35 (m, 2H), 7.21 (s, 1H), 7.15 (d, *J* = 4.0 Hz, 1H), 6.92 (d, *J* = 8.0 Hz, 1H), 6.08 (s, 2H), 3.92 (t, *J* = 4.0 Hz, 4H), 3.25 (t, *J* = 4.0 Hz, 4H). MS (ESI) *m*/*z* 481 [C₂₃H₂₀N₄O₄S₂ + H]⁺.

4-(4-(Quinolin-6-ylsulfonyl)piperazin-1-yl)-2-(thiophen-2-yl)quinazoline (26bz). Yield 46%. ¹H NMR (400 MHz, CDCl₃) δ 9.08 (d, J = 4.0 Hz, 1H), 8.38 (s, 1H), 8.32–8.26 (m, 2H), 8.04 (d, J = 8.0 Hz, 1H), 7.98 (d, J = 4.0 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H), 7.72–7.67 (m, 2H), 7.44 (d, J = 4.0 Hz, 1H), 7.35 (t, J = 8.0Hz, 1H), 7.12 (t, J = 4.0 Hz, 1H), 3.92 (t, J = 4.0 Hz, 4H), 3.37 (t, J = 4.0 Hz, 4H). MS (ESI) m/z 488 [C₂₅H₂₁N₅O₂S₂ + H]⁺.

6-(4-(2-(Thiophen-2-yl)quinazolin-4-yl)piperazin-1-ylsulfonyl) benzo[*d*]**thiazole (26ca).** Yield 63%. ¹H NMR (400 MHz, CDCl₃) δ 9.21 (s, 1H), 8.48 (s, 1H), 8.29 (d, *J* = 8.0 Hz, 1H), 7.98 (d, *J* = 4.0 Hz, 1H), 7.93 (d, *J* = 8.0 Hz, 1H), 7.87 (d, *J* = 8.0 Hz, 1H), 7.72–7.67 (m, 2H), 7.44 (t, *J* = 4.0 Hz, 1H), 7.35 (t, *J* = 8.0 Hz, 1H), 7.13 (t, *J* = 4.0 Hz, 1H), 3.91 (t, *J* = 4.0 Hz, 4H), 3.33 (t, *J* = 4.0 Hz, 4H). MS (ESI) *m*/*z* 494 [C₂₃H₁₉N₅O₂S₃ + H]⁺.

4-(4-(Methylsulfonyl)piperazin-1-yl)-2-(thiophen-2-yl)quinazoline (**26cb).** Yield 32%. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 4.0 Hz, 1H), 7.94 (d, J = 8.0 Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.75 (t, J = 8.0 Hz, 1H), 7.48–7.41 (m, 2H), 7.17 (d, J = 4.0 Hz, 1H), 3.96 (t, J = 4.0 Hz, 4H), 3.47 (t, J = 4.0 Hz, 4H) 2.84 (s, 3H). MS (ESI) m/z 375 [C₁₇H₁₈N₄O₂S₂ + H]⁺.

4-(4-(Isopropylsulfonyl)piperazin-1-yl)-2-(thiophen-2-yl)quinazoline (26cc). Yield 40%. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 4.0 Hz, 1H), 7.93 (d, *J* = 8.0 Hz, 1H), 7.84 (d, *J* = 8.0 Hz, 1H), 7.42 (t, *J* = 8.0 Hz, 1H), 7.47–7.40 (m, 2H), 7.16 (t, *J* = 4.0 Hz, 1H), 3.89 (t, *J* = 4.0 Hz, 4H), 3.61 (t, *J* = 4.0 Hz, 4H) 3.30–3.20 (m, 1H) 1.40 (s, 3H), 1.38 (s, 6H). MS (ESI) *m*/*z* 403 [C₂₉H₂₂-N₄O₂S₂ + H]⁺.

Preparation of 2-(Thiophen-2-yl)-4-(4-(trifluoromethylsulfonyl)piperazin-1-yl)quinazoline (26 cd). Triflic anhydride (0.33 mL, 2.02 mmol) was added to a suspension of amine 24 (500 mg, 1.68 mmol) in CH₂Cl₂(10 mL) and saturated aqueous NaHCO₃(0.5 mL) at 0 °C. After stirring for 2 h at room temperature, the reaction mixture was diluted with CH₂Cl₂ (15 mL) and washed with water (3×10 mL). The organic layer was dried over Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure to afford triflamide 25–56 (420 mg, 58%) as an off-white solid. ¹H NMR (400 MHz, DMSO-d₆) δ 8.06–8.04 (m, 1H), 7.97–7.95 (m, 1H), 7.81 (d, *J* = 8.4 Hz, 1H), 7.78–7.74 (m, 1H), 7.49–7.47 (m, 1H), 7.45–7.43 (m, 1H), 7.18–7.16 (m, 1H), 3.91–3.76 (m, 8H). MS (ESI) *m/z* 429 [C₁₇H₁₅F₃N₄O₂S₂ + H]⁺.

General Procedure for Preparation of Piperizine Amide Analogues (29 and 30). An aromatic carboxylic acid (0.18 mmol), HATU (0.25 mmol), and DIPEA (0.25 mmol) were added to a stirring solution of amine 25 (0.16 mmol) in DMF (10 mL). After stirring for 4 h at room temperature, the reaction mixture was diluted with EtOAc (20 mL). The organic layer was washed with water (2×10 mL), followed by brine (2×10 mL). The organic layers were dried over Na₂SO₄ and filtered. The filtrate was purified by silica-gel column chromatography (40% EtOAc in hexanes) to afford amide 29 or 30 as an off-white solid.

Phenyl{4-[2-(thiophen-2-yl)quinazolin-4-yl]piperazin-1-yl}methanone (29). Yield 68%. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, J = 2.8 Hz, 1H), 7.93 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 8.4 Hz, 1H), 7.74 (t, J = 7.2 Hz, 1H), 7.46–7.40 (m, 7H), 7.15 (t, J = 7.2 Hz, 1H), 4.02–3.73 (m, 8H). MS (ESI) m/z 401 [C₂₃H₂₀N₄OS + H]⁺.

(2,3-Dihydrobenzo[*b*][1,4]dioxin-6-yl){4-[2-(thiophen-2-yl)quinazolin-4-yl]piperazin-1-yl}methanone (30). Yield 91%. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 3.2 Hz, 1H), 7.94 (d, *J* = 8.0 Hz, 1H), 7.86 (d, *J* = 8.0 Hz, 1H), 7.74 (t, *J* = 8.0 Hz, 1H), 7.47-7.40 (m, 2H), 7.16 (t, *J* = 4.0 Hz, 1H), 7.03-6.87 (m, 3H), 4.30 (s, 4H), 3.86 (br s, 8H). MS (ESI) *m*/*z* 458 [C₂₅H₂₂-N₄O₃S + H]⁺.

Preparation of 6-(Bromomethyl)-2,3-dihydrobenzo[b][1,4]dioxine (27). A solution of 2,3-dihydrobenzo[b][1,4]dioxine-6-carboxylic acid (500 mg, 2.75 mmol) in THF (5 mL) was added dropwise to a suspension of LAH (315 mg, 8.32 mmol) in THF (5 mL) at -10 °C under a nitrogen atmosphere. After stirring for 4 h at room temperature, the reaction mixture was cooled to -10 °C and slowly quenched with THF/water (5 mL:5 mL). The reaction mixture was extracted with EtOAc (3×10 mL). The combined organic layer was washed with water $(3 \times 20 \text{ mL})$ and brine $(3 \times 20 \text{ mL})$, dried over Na₂SO₄, and filtered. The filtrate was concentrated under reduced pressure. The crude residue was purified by silica-gel column chromatography (20% EtOAc in hexanes) to afford (2,3-dihydrobenzo[b][1,4]dioxin-6-yl)methanol (300 mg, 65%) as a thick colorless oil. ¹H NMR (400 MHz, CDCl₃) & 6.90-6.79 (m, 3H), 4.56 (s, 2H), 4.25 (s, 4H). MS (ESI) $m/z \ 167 \ [C_9H_{10}O_3 + H]^+$

Phosphorus tribromide (0.13 mL, 1.44 mmol) was added dropwise to an ice-cold solution of the above alcohol (400 mg, 1.02 mmol) in CH₂Cl₂(5 mL) at 0 °C. After stirring for 2 h at 0 °C, the reaction mixture was quenched with an aqueous NaHCO₃ solution (4 mL). The organic layer was separated and washed with water (3 × 10 mL) and brine (3 × 10 mL). The organic layer was dried over Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure to afford benzylbromide **27** (300 mg, crude). The product was characterized by MS analysis and subjected to the next step without further purification. MS (ESI) m/z 227 [C₉H₉BrO₂ + H]⁺.

Preparation of 4-{4-[(2,3-Dihydrobenzo[b][1,4]dioxin-6-yl)methyl]piperazin-1-yl}-2-(thiophen-2-yl)quinazoline (28). Amine **24** (210 mg, 0.71 mmol) was added to a solution of bromide **27** (180 mg, 0.79 mmol) in DMF (2 mL) at room temperature. After stirring for 3 h at room temperature, the reaction mixture was diluted with water (5 mL) and extracted with EtOAc (3×5 mL). The combined organic layer was washed with water (3×10 mL) and brine (3×10 mL), dried over Na₂SO₄, and filtered. The filtrate was concentrated under reduced pressure. The crude residue was purified by silica-gel column chromatography (30% EtOAc in hexanes) to afford tertiary amine **28** (50 mg, 15%) as an off-white solid. ¹H NMR (400 MHz, CDCl₃) δ ¹H NMR (400 MHz, CDCl₃) δ 8.03 (s,1H), 7.89–7.84 (m, 2H), 7.69 (br s, 1H), 7.44–7.36 (m, 2H), 7.14 (s, 1H), 6.90–6.83 (m, 3H), 4.27 (s, 4H), 3.86 (s, 4H), 3.50 (s, 2H), 2.67 (s, 4H). MS (ESI) *m/z* 445 [C₂₅H₂₄N₄O₂S + H]⁺.

General Procedure for Preparation of Boc-Protected *N*,*N*-Dimethylalkyldiamines. A solution of $(Boc)_2O$ (22.68 mmol) in CH₂Cl₂ (100 mL) was added dropwise to a stirring solution of *N*, *N*-dimethylalkyldiamine (56.70 mmol) in CH₂Cl₂ (150 mL) at 0 °C over a period of 60 min. After stirring for 18 h at room temperature, the reaction mixture was washed with an aqueous NaHCO₃ solution (100 mL) and the organic layer was acidified with 10% AcOH to pH 3. The aqueous layer was separated and basified with 6 N aqueous NaOH solution to pH 12. The aqueous layer was extracted with CH₂Cl₂ (2 × 100 mL), and the combined organic layer was dried over Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure to afford the mono-Boc-protected *N*,*N*-dimethylalkyldiamines.

tert-Butyl Methyl[2-(methylamino)ethyl]carbamate. Yield 24%. ¹H NMR (400 MHz, CDCl₃) δ 3.33 (br s, 2H), 2.88 (s, 3H), 2.73 (t, J = 6.0 Hz, 2H), 2.45 (s, 3H), 1.46 (s, 9H). MS (ESI) m/z 189 [C₉H₂₀N₂0₂ + H]⁺.

tert-Butyl Methyl[3-(methylamino)propyl]carbamate. Yield 17%. ¹H NMR (400 MHz, CDCl₃) δ 9.86 (s, 1H), 9.67 (s, 1H), 8.89

(s, 1H), 7.31 (d, J = 8.4 Hz, 1H), 7.18 (s, 1H), 6.90 (d, J = 8.4 Hz, 1H), 3.95 (s, 3H), 3.94 (s, 3H). MS (ESI)*m*/*z*326 [C₁₇H₁₂ClN₃O₂ + H]⁺.

Preparation of *tert*-Butyl 2-[(2-Chloroquinazolin-4-yl)(methyl)amino]ethyl(methyl) Carbamate (32a). Utilizing the general procedure outlined for synthesis of 19 derivatives provided a 35% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 8.0 Hz, 1H), 7.76–7.68 (m, 2H), 7.38 (d, J = 6.0 Hz, 1H), 3.91 (s, 2H), 3.62–3.54 (m, 5H), 2.96 (m, 3H) 1.31 (s, 9H). MS(ESI) m/z 351 [C₁₇H₂₃ClN₄O₂ + H]⁺.

Preparation of *tert*-Butyl 3-[(2-Chloroquinazolin-4-yl)(methyl)amino]propyl(methyl) Carbamate (32b). Utilizing the general procedure outlined for synthesis of 19 derivatives provided a 66% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 8.0 Hz, 1H), 7.76 (d, J = 8.0 Hz, 1H), 7.68 (t, J = 8.0 Hz, 1H), 7.38 (t, J =8.0 Hz, 1H), 3.75 (t, J = 8.0 Hz, 2H), 3.42 (s, 3H), 3.34 (br s, 2H), 2.90 (s, 3H), 2.05–2.01 (m, 3H), 1.44 (s, 9H). MS (ESI) m/z 365 [C₁₈H₂₅ClN₄O₂ + H]⁺.

Preparation of *tert***-Butyl 4-(2-Chloroquinazolin-4-yl)-1,4-diazepane-1-carboxylate (32c).** Utilizing the general procedure outlined for synthesis of **19** derivatives provided 1.10 g, 70% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, J = 8.4 Hz, 1H), 7.79– 7.68 (m, 2H), 7.41–7.36 (m, 1H), 4.13–4.07 (m, 2H), 3.99–3.98 (m, 2H), 3.72 (br s, 2H), 3.56–3.47 (m, 2H), 2.16–2.04 (m, 2H), 1.41 (s, 9H). MS (ESI) m/z 363 [C₁₈H₂₃ClN₄O₂]⁺.

Preparation of *tert***-Butyl Methyl**(2-{methyl[2-(thiophen-2-yl)quinazolin-4-yl]amino}ethyl)carbamate (33a). Utilizing the general procedure outlined for synthesis of **21** derivatives provided 600 mg, 30% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.02 (br s, 2H), 7.86 (br s, 1H), 7.68–7.67 (m, 1H), 7.43 (d, J = 4.4 Hz, 1H), 7.34 (d, J = 6.0 Hz, 1H), 7.15 (t, J = 4.4 Hz, 1H), 4.06 (br s, 1H), 3.95 (br s, 1H), 3.69 (s, 2H), 3.53 (d, J = 10.4 Hz, 3H), 3.01–2.93 (m, 3H), 1.39 (s, 9H). MS (ESI) *m*/*z* 399 [C₂₁H₂₆N₄0₂S + H]⁺.

Preparation of *tert*-Butyl Methyl(3-{methyl[2-(thiophen-2-yl)quinazolin-4-yl]amino} propyl)carbamate (33b). Utilizing the general procedure outlined for synthesis of **21** derivatives provided 1.0 g, 54% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 4.0 Hz, 1H), 7.97 (d, J = 8.0 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.67 (t, J = 8.0 Hz, 1H), 7.43 (d, J = 4.0 Hz, 1H), 7.34 (t, J = 4.0 Hz, 1H), 7.14 (t, J = 4.0 Hz, 1H), 3.81 (t, J = 8.0 Hz, 2H), 3.38 (s, 3H), 3.36 (br s, 2H), 2.91 (s, 3H), 2.11–2.07 (m, 2H), 1.43 (s, 9H). MS (ESI) *m*/*z* 413 [C₂₂H₂₈N₄O₂S + H]⁺; 600 mg (54%) yield.

Preparation of *tert***-Butyl 4-[2-(Thiophen-2-yl)quinazolin-4-yl]-1,4-diazepane-1-carboxylate (33c).** Utilizing the general procedure outlined for synthesis of **21** derivatives provided 1.00 g, 80% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 2.8 Hz, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 8.4 Hz, 1H), 7.65 (t, J = 7.6Hz, 1H), 7.42 (d, J = 4.8 Hz, 1H), 7.32–7.27 (m, 1H), 7.13 (t, J =4.0 Hz, 1H), 4.06–4.05 (m, 4H), 3.23 (t, J = 5.2 Hz, 2H), 2.97 (t, J = 5.6 Hz, 2H), 2.10 (t, J = 5.2 Hz, 2H), 1.41 (s, 9H). MS (ESI) m/z 411 [C₂₂H₂₆N₄O₂S + H]⁺.

General Procedure for Preparation of Flexible Diaminolinker Quinazoline Analogues (34). A 20% hydrochloric acid solution in 1,4-dioxane (3 mL) was added to a stirring solution of Bocprotected amine (1.21 mmol) in CH_2Cl_2 (5 mL) at 0 °C. After stirring for 16 h at room temperature, the precipitated solids were filtered off and the filter cake was dissolved in water (10 mL). The resulting aqueous solution was washed with CH_2Cl_2 (2×10 mL), cooled to 0 °C, basified with a 6 N NaOH solution to pH 12, and extracted with CH_2Cl_2 (2×10 mL). The combined organic layer was dried over Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure to afford **34** as an oil.

 N^1 , N^2 -Dimethyl-N1-[2-(thiophen-2-yl)quinazolin-4-yl]ethane-1,2-diamine (34a). Yield 80%, 300 mg. ¹H NMR (400 MHz, CDCl₃) δ 8.07–8.02 (m, 2H), 7.86 (d, J = 8.4 Hz, 1H), 7.67 (t, J = 7.6 Hz, 1H), 7.43 (t, J = 4.8 Hz, 1H), 7.34 (t, J = 8.0 Hz, 1H), 7.15 (t, J = 8.0 Hz, 1H), 3.95 (t, J = 6.4 Hz, 2H), 3.47 (s, 3H), 3.08 (t, J = 6.4 Hz, 2H), 2.53 (s, 3H). ESI m/z 299 [C₁₆H₁₈N₄S + H]⁺.

 N^1 , N^3 -Dimethyl-N1-[2-(thiophen-2-yl)quinazolin-4-yl]propane-1,3-diamine (34b). Yield 79%, 300 mg. ¹H NMR (400 MHz, CDCl₃) δ 8.02–7.98 (m, 2H), 7.86 (d, J = 8.0 Hz, 1H), 7.66 (t, J = 8.0 Hz, 1H), 7.43 (d, J = 4.0 Hz, 1H), 7.32 (t, J = 8.0 Hz, 1H), 7.14 (t, J = 4.0 Hz, 1H), 3.88 (t, J = 8.0 Hz, 2H), 3.70 (s, 3H), 2.69 (t, J = 8.0 Hz, 2H), 2.43 (s, 3H), 2.08–2.00 (s, 2H). MS (ESI) m/z 313 [C₁₇H₂₀N₄S + H]⁺.

4-(1,4-Diazepan-1-yl)-2-(thiophen-2-yl)quinazoline (34c). Yield 60%, 500 mg. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 2.8 Hz, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.86 (d, J = 8.4 Hz, 1H), 7.65 (t, J = 7.6 Hz, 1H), 7.42 (d, J = 4.8 Hz, 1H), 7.32–7.27 (m, 1H), 7.13 (t, J = 4.0 Hz, 1H), 4.06–4.05 (m, 4H), 3.23 (t, J = 5.2 Hz, 2H), 2.97 (t, J = 5.6 Hz, 2H), 2.10 (t, J = 5.2 Hz, 2H). MS (ESI) m/z 311 [C₁₇H₁₈N₄S + H]⁺.

Preparation of *N*,4-Dimethyl-*N*-(2-{methyl[2-(thiophen-2-yl)quinazolin-4-yl]amino}ethyl)benzenesulfonamide (35a). Utilizing the general procedure outlined for synthesis of 32 derivatives provided 135 mg, 55% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.4 Hz, 1H), 7.99 (d, *J* = 3.6 Hz, 1H), 7.87 (d, *J* = 8.4 Hz, 1H), 7.70–7.66 (m, 3H), 7.41 (d, *J* = 4.8 Hz, 1H), 7.36 (t, *J* = 8.0 Hz, 2H), 7.25 (s, 1H), 7.13 (t, *J* = 4.0 Hz, 1H), 4.07 (t, *J* = 6.8 Hz, 2H), 3.58 (s, 3H), 3.49 (t, *J* = 6.8 Hz, 2H), 2.90 (s, 3H), 2.39 (s, 3H). ESI *m*/*z* 453 [C₂₃H₂₄N₄O₂S₂ + H]⁺.

Preparation of *N***,4-Dimethyl-***N***-(3-{methyl[2-(thiophen-2-yl)-quinazolin-4-yl]amino}propyl)benzenesulfonamide (35b).** Utilizing the general procedure outlined for synthesis of **32** derivatives provided 220 mg, 73% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.0 Hz, 2H), 7.90 (d, *J* = 8.0 Hz, 1H), 7.69 (t, *J* = 8.0 Hz, 1H), 7.63 (d, *J* = 8 Hz, 2H), 7.42 (d, *J* = 5.2 Hz, 1H), 7.37 (t, *J* = 7.6 Hz, 1H), 7.27 (s, 2H), 7.14 (t, *J* = 8.0 Hz, 1H), 3.89 (t, *J* = 8.0 Hz, 2H), 3.50 (s, 3H), 3.13 (t, *J* = 8.0 Hz, 2H), 3.09 (s, 3H), 2.40 (s, 3H), 2.14–2.07 (m, 2H). MS (ESI) *m*/*z* 467 [C₂₄H₂₆N₄O₂S₂ + H]⁺.

Preparation of 2-(Thiophen-2-yl)-4-(4-tosyl-1,4-diazepan-1-yl)quinazoline (35c). Utilizing the general procedure outlined for synthesis of **32** derivatives provided 355 mg, 74% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, J = 2.8 Hz, 1H), 7.85 (t, J =14.4 Hz, 2H), 7.68 (t, J = 7.2 Hz, 1H), 7.57 (d, J = 8.4 Hz, 2H), 7.43 (d, J = 4.4 Hz, 1H), 7.34–7.32 (m, 1H), 7.14 (t, J = 4.4 Hz, 1H), 7.08 (d, J = 8.0 Hz, 2H), 4.14 (t, J = 4.8 Hz, 2H), 4.04 (t, J =6.0 Hz, 2H), 3.70 (t, J = 5.2 Hz, 2H), 3.40 (t, J = 6.0 Hz, 2H), 2.29 (s, 3H), 2.17 (t, J = 5.6 Hz, 2H). MS (ESI) m/z 465 [C₂₄H₂₄-N₄O₂S₂ + H]⁺.

Preparation of 2-Chloro-4-(4-tosylpiperidin-1-yl)quinazoline (36). Utilizing the general procedure outlined for synthesis of 19 derivatives provided 600 mg, 82% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.84–7.32 (m, 5H), 7.47–7.40 (m, 3H), 4.51 (d, *J* = 13.2 Hz, 2H), 3.26–3.11 (m, 3H), 2.48 (s, 3H), 2.18 (d, *J* = 10.8 Hz, 2H), 2.05–1.94 (m, 2H). MS (ESI) *m*/*z* 402 [C₂₀H₂₀ClN₃O₂S]⁺.

Preparation of 2-(2-Chloroquinazolin-4-ylamino)ethanol (37). Utilizing the general procedure outlined for synthesis of **19** derivatives provided 2.70 g, 48% yield. ¹H NMR (400 MHz, DMSO- d_6) δ 8.73 (s, 1H), 8.26 (d, J = 7.6 Hz, 1H), 7.77 (t, J = 7.2 Hz, 1H), 7.60 (d, J = 8.0 Hz, 1H), 7.51 (t, J = 7.6 Hz, 1H), 4.83 (t, J = 4.2 Hz, 1H), 3.64–3.56 (m, 4H). MS (ESI) m/z 223 [C₁₀H₁₀ClN₃O]⁺.

Preparation of 2-(Thiophen-2-yl)-4-(4-tosylpiperidin-1-yl)quinazoline (38). Utilizing the general procedure outlined for synthesis of 21 derivatives provided 220 mg, 66% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, J = 3.6 Hz, 1H), 7.90 (d, J = 8.4 Hz, 1H), 7.81–7.77 (m, 3H), 7.71 (t, J = 7.6 Hz, 1H), 7.45 (d, J = 4.8 Hz, 1H), 7.41–7.38 (m, 3H), 7.14 (t, J = 4.4 Hz, 1H), 4.48 (d, J = 13.6 Hz, 2H), 3.26–3.08 (m, 3H), 2.46 (s, 3H), 2.19 (d, J = 11.2 Hz, 2H), 2.08–1.98 (m, 2H). MS (ESI) m/z 450 [C₂₄H₂₃-N₃O₂S₂ + H]⁺.

Preparation of 2-[2-(Thiophen-2-yl)quinazolin-4-ylamino]ethanol (**39**). Utilizing the general procedure outlined for synthesis of **21** derivatives provided 320 mg, 53% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.32 (s, 1H), 8.22 (d, J = 8.0 Hz, 1H), 7.92 (d, J = 2.8 Hz, 1H), 7.74 (t, J = 7.2 Hz, 1H), 7.66 (t, J = 4.0 Hz, 1H), 7.43 (t, J = 8.0 Hz, 1H), 7.16 (t, J = 4.0 Hz, 1H), 4.81 (t, J = 4.0 Hz, 1H), 3.70 (d, J = 4.0 Hz, 4H). MS (ESI) m/z 372 [C₁₄H₁₃N₃OS + H]⁺.

Preparation of 2-[2-(Thiophen-2-yl)quinazolin-4-ylamino]ethyl Pivalate (40). Cesium carbonate (670 mg, 2.06 mmol) was added to a stirring suspension of alcohol **39** (280 mg, 1.03 mmol) in NMP (5 mL) at room temperature. After stirring for 30 min, pivaloyl chloride (0.14 mL, 1.13 mmol) was added and the stirring was continued for 16 h at room temperature. The reaction mixture was diluted with water (20 mL) and extracted with EtOAc (3×20 mL). The combined organic layer was washed with a saturated NaHCO₃ solution (3×20 mL) and water (3×20 mL), dried over Na₂SO₄, and filtered. The filtrate was concentrated under reduced pressure. The crude residue was purified by silica-gel column chromatography (12% EtOAc in hexanes) to afford pivalate **40** (50 mg, 14%) as an oil. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 4.0 Hz, 1H), 7.86 (d, J = 8.0 Hz, 1H), 7.73–7.64 (m, 2H), 7.45–7.39 (m, 2H), 7.15 (t, J = 4.0 Hz, 1H), 6.23 (br s, 1H), 4.49 (t, J = 8.0 Hz, 2H), 4.06–4.02 (m, 2H), 1.21 (s, 9H). MS (ESI) m/z 356 [C₁₉H₂₁N₃O₂S + H]⁺.

Preparation of 2-{Methyl[2-(thiophen-2-yl)quinazolin-4-yl]amino}ethyl Pivalate (41). Amine 40 (400 mg, 1.12 mmol) was added to a suspension of NaH (60% in mineral oil, 88 mg, 2.24 mmol) in DMF (8 mL) at 0 °C. After stirring for 15 min at 0 °C, CH₃I (0.20 mL, 3.38 mmol) was added. After stirring for 6 h at room temperature under a nitrogen atmosphere, the reaction mixture was cooled to 0 °C, quenched with a saturated solution of NH_4Cl (10 mL), and extracted with EtOAc (3 × 10 mL). The combined organic layer was washed with water $(3 \times 20 \text{ mL})$ and brine $(3 \times 20 \text{ mL})$, dried over Na₂SO₄, and filtered. The filtrate was concentrated under reduced pressure. The crude residue was purified by silica-gel column chromatography (12% EtOAc in hexanes) to afford the N-methylated derivative 41 (150 mg, 35%) as an oil. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, J = 8.0 Hz, 2H), 7.88 (d, J = 8.0 Hz, 1H), 7.68 (t, J = 8.0 Hz, 1H), 7.44 (d, J = 4.0 Hz, 1H), 7.35 (t, J = 8.0 Hz, 1H), 7.14 (t, J = 4.0 Hz, 1H), 4.54 (t, J = 8.0 Hz, 2H), 4.11 (t, J = 5.6 Hz, 2H), 3.53 (s, 3H), 1.15 (s, 9H). MS (ESI) m/z 370 $[C_{20}H_{23}N_3O_2S + H]^+$.

Preparation of 2-{Methyl[2-(thiophen-2-yl)quinazolin-4-yl]amino}ethanol (42). A solution of 3 N NaOH (0.12 mL) was added to a stirring solution of pivalate 41 (120 mg, 0.32 mmol) in a mixture of THF/MeOH (2 mL:1 mL) at room temperature. After stirring for 6 h at room temperature, the reaction mixture was concentrated under reduced pressure. The crude residue was purified by trituration with CH₂Cl₂/hexanes to afford *N*-methylaminoethanol derivative 42 (40 mg, 55%) as an off-white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, J = 8.0 Hz, 1H), 8.00 (d, J = 4.0 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.70 (t, J = 8.0 Hz, 1H), 7.44 (d, J = 4.0 Hz, 1H), 7.37 (t, J = 8.0 Hz, 1H), 7.14 (t, J = 4.0 Hz, 1H), 5.01 (br s, 1H), 4.08 (d, J = 8.0 Hz, 2H), 4.01 (d, J = 8.0 Hz, 2H), 3.53 (s, 3H). MS (ESI) m/z 286 [C₁₅H₁₅N₃OS + H]⁺.

Preparation of *N*-(2-Carbamoylphenyl)thiophene-2-carboxamide (45). Oxalyl chloride (2 mL, 18.87 mmol) was added to a stirring suspension of acid 43 (2.00 g, 15.74 mmol) in CH₂Cl₂ (40 mL) at room temperature. After stirring for 3 h at room temperature, the reaction mixture was concentrated under reduced pressure. The residue was dissolved in CH₂Cl₂ (40 mL), and 2-aminobenzamide (44, 2.50 g, 18.87 mmol) was added. After stirring for 4 h, the reaction mixture was concentrated under reduced pressure. The resulting residue was dissolved in CH₂Cl₂ (30 mL); the organic layer was washed with water (3 × 10 mL), dried over Na₂SO₂, and filtered. The filtrate was concentrated under reduced pressure to afford amide 45 (3.00 g, 78%) as an off-white solid. The product was characterized by MS analysis and subjected to the next step without further purification. MS (ESI) m/z 247 [C₁₂H₁₀N₂O₂S + H]⁺.

Preparation of 2-(Thiophen-2-yl)quinazolin-4-ol (46). A solution of 6 N NaOH (10 mL) was added to a suspension of amide **45** (1.0 g, 4.05 mmol) in ethanol (20 mL), and the reaction mixture was heated at reflux temperature for 2 h. After this time, the reaction was cooled and concentrated under reduced pressure. The resulting residue was diluted with water and acidified with a saturated citric acid solution. The resulting precipitate was filtered off; the filter cake was washed with cold acetone (20 mL) and dried under reduced pressure to afford quinazilone **46** (800 mg, 85%) as an off-white solid. ¹H NMR (400 MHz, DMSO-*d*₆) δ 12.65 (s, 1H), 8.22 (d, *J* = 3.6 Hz, 1H), 8.11 (d, *J* = 7.6 Hz, 1H),

7.86 (d, J = 4.8 Hz, 1H), 7.79 (t, J = 7.6 Hz, 1H), 7.64 (d, J = 8 Hz, 1H), 7.47 (t, J = 7.6 Hz, 1H), 7.22 (t, J = 4.4 Hz, 1H). MS (ESI) m/z 229 [C₁₂H₈N₂OS + H]⁺.

Preparation of 4-Chloro-2-(thiophen-2-yl)quinazoline (47). N, N-Dimethylaniline (4 mL) was added to a suspension of quinazilone 46 (800 mg, 3.50 mmol) in phosphorus oxychloride (12 mL) at room temperature. The reaction mixture was heated at reflux temperature for 4 h. After this time, the reaction mixture was cooled to 0 °C and the ice-cold reaction mixture was added slowly to crushed ice with continuous stirring. The aqueous layer was extracted with CH_2Cl_2 (3 × 10 mL). The combined organic layer was washed with an aqueous NaHCO₃ solution $(2 \times 10 \text{ mL})$ and water $(3 \times 10 \text{ mL})$, dried over Na₂SO₂, and filtered. The filtrate was concentrated under reduced pressure. The crude residue was purified by silica-gel column chromatography (10% EtOAc in hexanes) to afford chloroquinazoline 47 (700 mg, 81%) as an off-white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.23-8.21 (m, 1H), 8.16-8.15 (m, 1H), 8.02 (d, J = 8.4 Hz, 1H), 7.93-7.89 (m, 1H), 7.65-7.61 (m, 1H), 7.55-7.54 (m, 1H), 7.27-7.23 (m, 1H).

Preparation of tert-Butyl 4-[2-(Thiophen-2-yl)quinazolin-4-yl]-5,6-dihydropyridine-1(2H)-carboxylate (49). Boronate ester 48 (1.00 g, 3.41 mmol) and K₂CO₃ (785 mg, 5.69 mmol) were added to a stirring solution of chloroquinazoline 47 (700 mg, 2.84 mmol) in DMF (15 mL). The reaction mixture was purged with argon gas for 20 min, and Pd(PPh₃)₄ (328 mg, 0.28 mmol) was added. The reaction mixture was heated at 100 °C for 4 h under an argon atmosphere. After this time, the reaction was cooled to room temperature, diluted with water (30 mL), and extracted with EtOAc (3 \times 15 mL). The combined organic layer was washed with water $(3 \times 30 \text{ mL})$, dried over Na₂SO₄, and filtered. The filtrate was concentrated under reduced pressure. The crude residue was purified by silica-gel column chromatography (10% EtOAc in hexanes) to afford dihydropyridine 49 (450 mg, 40%) as an off-white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.14–8.13 (m, 2H), 8.02 (d, J = 8.4 Hz, 1H), 7.86–7.82 (m, 1H), 7.58–7.49 (m, 2H), 7.18 (t, J = 4 Hz, 1H), 5.12–5.02 (m, 1H), 4.42 (br s, 1H), 4.15-4.08 (m, 1H), 3.79 (br s, 1H), 2.52-2.51 (m, 1H), 2.36-2.24 (m, 2H), 1.54 (s, 9H). MS (ESI) m/z 394 $[C_{22}H_{23}N_3O_2S + H]^+$.

Preparation of *tert*-Butyl 4-[2-(Thiophen-2-yl)quinazolin-4-yl]piperidine-1-carboxylate (50). Ammonium formate (40 mg, 0.63 mmol) and Pd/C (35 mg) were added to a stirring solution of dihydropyridine 49 (50 mg, 0.12 mmol) in ethanol (2 mL). The reaction mixture was heated at reflux temperature for 48 h under a nitrogen atmosphere, cooled, and filtered through a pad of Celite. The filtrate was concentrated under reduced pressure, and the crude residue was purified by silica-gel column chromatography (5% EtOAc in hexanes) to afford piperidine 50 (8 mg, 16%) as an off-white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.16–8.15 (m, 1H), 8.10 (d, J = 8.4 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.86–7.82 (m, 1H), 7.57–7.49 (m, 2H), 7.19–7.17 (m, 1H), 4.31 (br s, 2H), 3.71–3.65 (m, 1H), 3.04–2.99 (m, 2H), 2.17–1.96 (m, 4H), 1.52 (s, 9H). MS (ESI) m/z 396 [C₂₂H₂₅-N₃O₂S + H]⁺.

Preparation of 2-(Thiophen-2-yl)-4-(1-tosylpiperidin-4-yl)quinazoline (51). Trifluoroacetic acid (0.3 mL) was added to an icecold solution of Boc-protected piperidine **50** (90 mg, 0.22 mmol) in CH₂Cl₂ at 0 °C. After stirring for 3 h at room temperature, the reaction mixture was concentrated under reduced pressure. The crude residue was washed with MTBE, characterized by MS analysis, and subjected to the next step without further purification. MS (ESI) *m*/*z* 296 $[C_{17}H_{17}N_3S - TFA]^+$.

N,*N*-Diisopropylethylamine (0.17 mL, 1.02 mmol) and tosyl chloride(70 mg, 0.36 mmol) were added to a stirring solution of the TFA salt of the piperidine (90 mg, 0.34 mmol) in NMP (2 mL) at 0 °C. After stirring for 3 h at room temperature, the reaction mixture was diluted with water (10 mL) and extracted with EtOAc (3×5 mL). The combined organic layer was washed with water (3×10 mL) and brine (3×10 mL), dried over Na₂SO₄, and filtered. The filtrate was concentrated under reduced pressure.

The crude residue was purified by silica-gel column chromatography (30% EtOAc in hexanes) to afford sulphonamide **51** (80 mg, 58%) as an off-white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.10– 8.09 (m, 1H), 8.01 (d, J = 8.0 Hz, 1H), 7.95 (d, J = 8.4 Hz, 1H), 7.83–7.79 (m, 1H), 7.75–7.73 (m, 2H), 7.51–7.51 (m, 2H), 7.38 (d, J = 7.6 Hz, 2H), 7.19–7.17 (m, 1H), 3.98–3.95 (m, 2H), 3.55– 3.49 (m, 1H), 2.69–2.62 (m, 2H), 2.47 (s, 3H), 2.32–2.07 (m, 2H), 2.04–2.03 (m, 2H). MS (ESI) m/z 450 [C₂₁H₂₃N₃O₂S₂ + H]⁺.

Preparation of 2,4-Dibromoquinazoline (53). *N*,*N*-Dimethylaniline (4.5 mL, 12.34 mmol) was added to a suspension of quinazolindione **52** (10.0 g, 61.72 mmol) in phosphoryltribromide (125 g, 407.4 mmol) at room temperature. The reaction mixture was heated at 110 °C for 4 h. The reaction was cooled to 0 °C, and the ice-cold reaction mixture was added to crushed ice with continuous stirring. The aqueous layer was extracted with CH₂Cl₂. The combined organic layers were washed with H₂O (3 × 50 mL) and saturated aqueous NaHCO₃ solution (3 × 50 mL), dried over Na₂SO₄, and filtered, and the filtrate was concentrated under reduced pressure to afford 2,4-dibromoquinazoline (**53**, 12.0 g, 68%) as an off-white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.13–7.09 (m, 1H), 6.79–6.72 (m, 2H), 6.60–6.57 (m, 1H).

Preparation of 2-Bromo-4-(4-tosylpiperazin-1-yl) Quinazoline (54). N,N-Diisopropylethylamine (13.36 mL, 76.64 mmol) and piperizine 17a (9.10 g, 38.32 mmol) were added to a stirring solution of dibromide 53 (10.0 g, 34.84 mmol) in NMP (70 mL) at 0 °C. After stirring for 3 h at room temperature, the reaction mixture was diluted with water (200 mL) and extracted with EtOAc (3×50 mL). The combined organic layers were washed with water (3 \times 50 mL) and brine (3 \times 50 mL), dried over Na₂SO₄, and filtered, and the filtrate was concentrated under reduced pressure. The crude residue was purified by trituration with hexanes and dried under vacuum to afford 2-bromoquinazoline 54 (12.0 g, 82%) as an off-white solid. ¹H NMR (400 MHz, $CDCl_3$) δ 7.81 (d, J = 8.8 Hz, 1H), 7.75–7.66 (m, 2H), 7.67 (d, J = 8.0 Hz, 2H, 7.44 (t, J = 7.6 Hz, 1H), 7.36 (d, J = 8.0 Hz, 2H), 3.95 (t, J = 4.8 Hz, 4H), 3.20 (t, J = 4.8 Hz, 4H), 2.45 (s, 3H). MS (ESI) m/z 447 $[C_{19}H_{19}BrN_4O_2S]^+$.

General Procedure for Stille Coupling. The heterocyclic stannane (0.33 mmol), K_2CO_3 (0.22 mmol), and tetraethylammoniumchloride (0.22 mmol) were added to a stirring solution of bromide 54 (0.22 mmol) in DMF (3 mL). The reaction mixture was purged with argon gas for 30 min and then heated at 110 °C for 6 h under a nitrogen atmosphere. The reaction mixture was cooled to room temperature, diluted with water (10 mL), and extracted with EtOAc (3 × 5 mL). The combined organics were washed with water (3 × 10 mL), dried over Na₂SO₄, and filtered. The filtrate was concentrated under reduced pressure. The crude residue was purified by column chromatography.

5-(4-(4-Tosylpiperazin-1-yl)quinazolin-2-yl)thiazole (56b). Yield 50%. ¹H NMR (400 MHz, CDCl₃) δ 8.87 (s, 1H), 8.68 (s, 1H), 7.89 (d, J = 8.4 Hz, 1H), 7.70–7.67 (m, 4H), 7.42 (t, J = 7.2 Hz, 1H), 7.35 (d, J = 8.0 Hz, 2H), 3.93 (t, J = 4.4 Hz, 4H), 3.25 (t, J = 4.4 Hz, 4H), 2.43 (s, 3H). MS (ESI) m/z 452 [C₂₂H₂₂N₅O₂S₂ + H]⁺.

4-(4-(4-Tosylpiperazin-1-yl)quinazolin-2-yl)thiazole (56c). Yield 38%. ¹H NMR (400 MHz, CDCl₃) δ 8.96 (s, 1H), 8.33 (s, 1H), 8.11 (d, J = 8.4 Hz, 1H), 7.78–7.68 (m, 4H), 7.45–7.34 (m, 3H), 3.91 (s, 4H), 3.27 (s, 4H), 2.44 (s, 3H). MS (ESI) m/z 452 [C₂₂H₂₂-N₅O₂S₂ + H]⁺.

2-(4-(4-Tosylpiperazin-1-yl)quinazolin-2-yl)oxazole (56d). Yield 10%. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 8.8 Hz, 1H), 7.86 (s, 1H), 7.81–7.77 (m, 2H), 7.69 (d, J = 8.0 Hz, 2H), 7.50 (t, J = 7.6 Hz, 1H), 7.40 (s, 1H), 7.35 (d, J = 8.0 Hz, 2H), 3.99 (t, J = 8.0 Hz, 4H), 3.27 (t, J = 4.8 Hz, 4H), 2.43 (s, 3H). MS (ESI) m/z 435 [C₂₂H₂₁N₅O₃S + H]⁺.

2-(Pyridazin-4-yl)-4-(4-tosylpiperazin-1-yl)quinazoline (56h). Yield 16%. ¹H NMR (400 MHz, CDCl₃) δ 10.16 (s, 1H), 9.34 (d, J = 4.0 Hz, 1H), 8.44 (s, 1H), 8.00 (d, J = 8.0 Hz, 1H), 7.82 (d, J = 7.6 Hz, 2H), 7.69 (d, J = 7.6 Hz, 2H), 7.52 (t, J = 7.2 Hz, 1H), 7.35 (d, J = 7.2 Hz, 2H), 3.99 (s, 4H), 3.27 (s, 4H), 2.42 (s, 3H). MS (ESI) m/z 447 [C₂₃H₂₂N₆O₂S + H]⁺. **2-(Pyrazin-2-yl)-4-(4-tosylpiperazin-1-yl)quinazoline (56i).** Yield 21%. ¹H NMR (400 MHz, CDCl₃) δ 9.69 (s, 1H), 8.80 (s, 1H), 8.67 (s, 1H), 8.17 (d, *J* = 8.4 Hz, 1H), 7.84–7.80 (m, 2H), 7.69 (d, *J* = 8.0 Hz, 2H), 7.51 (t, *J* = 7.2 Hz, 1H), 7.34 (d, *J* = 7.6 Hz, 2H), 4.00–3.99 (m, 4H), 3.27 (s, 4H), 2.42 (s, 3H). MS (ESI) *m*/*z* 447 [C₂₃H₂₂N₆O₂S + H]⁺.

2-(Pyrimidin-2-yl)-4-(4-tosylpiperazin-1-yl)quinazoline (56j). Yield 29%. ¹H NMR (400 MHz, CDCl₃) δ 9.01 (d, J = 4.8 Hz, 2H), 8.19 (d, J = 8.0 Hz, 1H), 7.83–7.77 (m, 2H), 7.69 (d, J = 8.0 Hz, 2H), 7.51 (t, J = 7.6 Hz, 1H), 7.41 (t, J = 4.8 Hz, 1H), 7.35 (d, J = 7.6 Hz, 2H), 4.00 (t, J = 4.8 Hz, 4H), 3.27 (t, J = 4.4 Hz, 4 Hz), 2.44 (s, 3H). MS (ESI) m/z 447 [C₂₃H₂₂N₆O₂S + H]⁺.

Preparation of 4-(4-Tosylpiperazin-1-yl)-2-(tributylstannyl) Quinazoline (55). n-Butyl lithium (1.2 mL, 2.46 mmol) was added dropwise to a stirring solution of bromide 54 (1.00 g, 2.23 mmol) in THF at -78 °C. After stirring for 30 min under an argon atmosphere, tributylchlorostannane (0.8 mL, 2.99 mmol) was added dropwise to the reaction mixture at -78 °C and stirring was continued for 16 h at room temperature. After this time, the reaction mixture was quenched with water and concentrated under reduced pressure. The residue was dissolved in EtOAc (30 mL) and washed with water (2×20 mL). The organic layer was dried over Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure. The crude residue was purified by silica-gel column chromatography (10-15% EtOAc in hexanes) to afford stannane 55 (420 mg, 29%) as an oil. ¹H NMR (400 MHz, CDCl₃) δ 7.90–7.88 (m, 1H), 7.71–7.66 (m, 4H), 7.40-7.34 (m, 3H), 3.81 (br s, 4H), 3.19 (br s, 4H), 2.44 (s, 3H), 1.67-1.52 (m, 6H), 1.38-1.21 (m, 7H), 1.16-1.08 (m, 6H), 0.89-0.86 (m, 8H).

Preparation of 2-(Pyrimidin-5-yl)-4-(4-tosylpiperazin-1-yl) Quinazoline (56k). 5-Bromopyrimidine (110 mg, 0.68 mmol), CsF (205 mg, 1.36 mmol), and CuI (13 mg, 0.10 mmol) were added to a stirring solution of stannane 55 (450 mg, 0.68 mmol) in DMF (5 mL). The reaction mixture was purged with nitrogen for 30 min, followed by the addition of Pd(PPh₃)₄ (50 mg, 0.06 mmol). The reaction mixture was heated at 110 °C for 16 h under a nitrogen atmosphere. The reaction mixture was cooled to room temperature, diluted with water (40 mL), and extracted with EtOAc (3×30 mL). The organic layer was dried over Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure. The crude residue was purified by silica-gel column chromatography (40% EtOAc in hexanes) followed by trituration with CH2Cl2/hexanes to afford quinazoline 56k (24 mg, 9%) as an off-white solid. ¹H NMR (400 MHz, CDCl₃) δ 9.72 (s, 2H), 9.30 (s, 1H), 7.98 (d, J = 8.4 Hz, 1H), 7.82–7.77 (m, 2H), 7.69 (d, J = 8.4 Hz, 2H), 7.48 (t, J = 7.6 Hz, 1H), 7.35 (d, J = 8.0 Hz, 2H), 3.98 (t, J = 4.8 Hz, 4H), 3.26 (t, J = 4.4 Hz, 4H), 2.42 (s, 3H). MS (ESI) m/z 447 $[C_{23}H_{22}N_6O_2S + H]^+$.

Preparation of 4-(4-Tosylpiperazin-1-yl)quinazoline (62). Bis-(pinacolato)diboron (236 mg, 0.93 mmol) and KOAc (183 mg, 1.86 mmol) were added to a stirring solution of chloroquinazoline 19a (250 mg, 0.62 mmol) in DMF (8 mL). The reaction mixture was purged with argon gas for 30 min, and Pd(dppf)₂Cl₂ (125 mg, 0.15 mmol) was added. The reaction mixture was heated at 100 °C for 18 h under an argon atmosphere. After this time, the reaction mixture was cooled to room temperature, diluted with ice-cold water (30 mL), and extracted with EtOAc $(2 \times 10 \text{ mL})$. The combined organic layer was dried over Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure. The crude residue was purified by silica-gel column chromatography (50% EtOAc in hexanes) to afford quinazoline 62 (80 mg, 34%) as an off-white solid. ¹H NMR (400 MHz, $CDCl_3$) δ 8.71 (s, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.78–7.72 (m, 2H), 7.67 (d, J = 8.0 Hz, 2H), 7.46 (t, J = 7.6 Hz, 1H), 7.35 (d, J =8.0 Hz, 2H), 3.87 (t, J = 4.4 Hz, 4H), 3.21 (t, J = 4.8 Hz, 4H), 2.47 (s, 3H). MS (ESI) m/z 411 [C₂₂H₂₆N₄O₂S + H]⁺.

Preparation of 4-(4-Tosylpiperazin-1-yl)quinazoline-2-carbonitrile (57). Zinc(II) cyanide (350 mg, 2.98 mmol) and dppf (250 mg, 0.48 mmol) were added to a stirring solution of chloroquinazoline **19a** (1.00 g, 2.48 mmol) in NMP (30 mL). The reaction mixture was purged with argon for 30 min, and Pd₂(dba)₃ (220 mg, 0.24 mmol) was added. The reaction mixture was heated at 90 °C for 18 h under an argon atmosphere. The reaction mixture was cooled to room temperature, diluted with water (30 mL), and extracted with EtOAc (3 × 15 mL). The combined organic layer was filtered through a cotton plug, and the filtrate was dried over Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure. The crude residue was purified by silica-gel column chromatography (30% EtOAc in hexanes) to afford nitrile **57** (300 mg, 30%) as an off-white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 8.0 Hz, 1H), 7.85–7.80 (m, 2H), 7.66 (d, *J* = 8.0 Hz, 2H), 7.59 (t, *J* = 7.2 Hz, 1H), 7.36 (d, *J* = 8.0 Hz, 2H), 4.00 (br s, 4H), 3.18 (br s, 4H), 2.45 (s, 3H). MS (ESI) *m*/*z* 394 [C₂₀H₁₉N₅O₂S + H]⁺.

Preparation of 4-(4-Tosylpiperazin-1-yl)quinazoline-2-carboxamide (58). Concentrated hydrochloric acid (10 mL) was added to nitrile **57** (100 mg, 0.25 mmol), and the reaction was heated at 50 °C for 16 h. The reaction mixture was cooled and neutralized with a 6 N solution of NaOH to pH 7 and extracted with CH₂Cl₂ (2 × 25 mL). The combined organic layers were dried over Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure to afford amide **58** (60 mg, 43%) as an off-white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 8.4 Hz, 1H), 7.82–7.81 (m, 2H), 7.68 (d, J = 8.0 Hz, 2H), 7.54 (t, J = 7.6 Hz, 1H), 7.36 (d, J = 7.6 Hz, 2H), 5.85 (br s, 2H), 3.95 (br s, 4H), 3.25 (br s, 4H), 2.45 (s, 3H). MS (ESI) *m*/*z* 412 [C₂₀H₂₁N₅O₃S + H]⁺.

Preparation of Methyl 4-(4-Tosylpiperazin-1-yl) Quinazoline-2-carboxylate (59). Dry HCl gas was bubbled through a stirring solution of nitrile **57** (200 mg, 0.50 mmol) in methanol (10 mL) for 30 min. After stirring for 6 h at room temperature, the reaction mixture was concentrated under reduced pressure. The crude residue was purified by silica-gel column chromatography (20% EtOAc in hexanes) to afford ester **59** (150 mg, 67%) as an off-white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 8 Hz, 1H), 7.80 (t, J = 8 Hz, 2H), 7.67 (d, J = 8 Hz, 2H), 7.55 (t, J = 8 Hz, 1H), 7.35 (d, J = 8 Hz, 2H), 4.03 (s, 3H), 3.99 (t, J = 4.8 Hz, 4H), 3.22 (t, J = 4.8 Hz, 3H), 2.44 (s, 3H). MS (ESI) m/z 427 [C₂₁H₂₂N₄O₄S + H]⁺.

Preparation of 1-[4-(4-Tosylpiperazin-1-yl)quinazolin-2-yl]ethanone (60). Methyl magnesium bromide (1.64 mmol) was added to a stirring solution of nitile 57 (0.74 mmol) in THF (15 mL) at 0 °C. After stirring for 5 h at room temperature under a nitrogen atmosphere, the reaction mixture was quenched with water (20 mL). Solvents were removed under reduced pressure. The resulting residue was diluted with EtOAc (20 mL) and washed with water $(2 \times 10 \text{ mL})$ followed by brine $(2 \times 10 \text{ mL})$. The organic layer was separated, dried over Na₂SO₄, and filtered. The filtrate was concentrated under reduced pressure. The crude residue was purified by silica-gel column chromatography (30% EtOAc in hexanes) to afford ketone 59 (45 mg, 15%) as an off-white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, J = 8.0 Hz, 1H), 7.81 (t, J = 6.0 Hz, 2H), 7.68 (d, J = 8.0 Hz, 2H), 7.55 (t, J = 8.0 Hz, 1H), 7.35 (d, J = 8.0 Hz, 2H), 3.96 (t, J = 4.0 Hz, 4H), 3.23 (t, J = 4.0 Hz, 4H), 2.75 (s, 3H), 2.44 (s, 3H). MS (ESI) m/z 410 $[C_{21}H_{22}N_4O_3S + H]^+$

General Procedure for the Substitution Reaction. A mixture of 19a (0.49 mmol) and the NH-heterocycle (0.54 mmol) in acetonitrile (1.5 mL) was heated at reflux for 18 h. The resulting precipitate was filtered off, and the filter cake was dissolved in 20% MeOH in CH_2Cl_2 (6 mL). The organic layer was washed with an aqueous solution of NaHCO₃ (5 mL), dried over Na₂SO₄, and filtered. The filtrate was concentrated under reduced pressure. The crude residue was purified by preparative TLC plate (1% MeOH in CHCl₃) to afford heterocyclic derivatives.

Preparation of 2-(1*H*-**Benzo**[*d*]**imidazol-1-yl**)-4-(4-tosylpiperazin-1-yl)quinazoline (63). Yield 25%, 60 mg. ¹H NMR (400 MHz, CDCl₃) δ 9.06 (s, 1H), 8.71 (d, J = 8.0 Hz, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.86–7.76 (m, 3H), 7.69 (d, J = 8.0 Hz, 2H), 7.46–7.34 (m, 5H), 4.01 (t, J = 4.4 Hz, 4H), 3.92 (t, J = 4.8 Hz, 4H), 2.42 (s, 3H). MS (ESI) m/z 485 [C₂₆H₂₄N₆O₂S + H]⁺. Preparation of 5-[4-(4-Tosylpiperazin-1-yl)quinazolin-2-yl]thiophene-2-carbaldehyde (64). Utilizing the general procedure outlined for synthesis of 21 derivatives provided aldehyde 64 which was immediately utilized due to instability. MS (ESI) m/z479 $[C_{24}H_{22}N_4O_3S_2 + H]^+$.

Preparation of {5-[4-(4-Tosylpiperazin-1-yl)quinazolin-2-yl]thiophen-2-yl}methanol (65). Sodium borohydride (165 mg, 4.42 mmol) was added portion wise to a stirring ice-cold solution of aldehyde 64 (850 mg, 1.77 mmol) in THF/MeOH (1:1, 20 mL) at 0 °C. After stirring for 3 h at room temperature, the reaction mixture was concentrated under reduced pressure. The crude residue was dissolved in water (15 mL), and the aqueous layer was extracted with CH_2Cl_2 (3 × 15 mL). The combined organic layer was dried over Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure. The crude residue was purified by silica-gel column chromatography (40% EtOAc in hexanes) to afford alcohol 65 (350 mg, 47%) as an off-white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.90–7.85 (m, 2H), 7.69– 7.67 (m, 4H), 7.38–7.33 (m, 3H), 7.03 (d, J = 3.6 Hz, 1H), 4.87 (s, 2H), 3.90 (t, J = 4.8 Hz, 4H), 3.24 (t, J = 4.8 Hz, 4H), 2.43 (s, 3H), 2.11 (br s, 1H). MS (ESI) m/z 481 $[C_{24}H_{24}N_4O_3S_2 + H]^+$.

General Procedure for Coupling Reaction. Triethylamine (1.24 mmol) was added to a stirring solution of alcohol 65 (0.41 mmol) in CH₂Cl₂ (3.0 mL) at 0 °C followed by the slow addition of MsCl (0.83 mmol). After stirring for 4 h at room temperature, the reaction mixture was cooled to 0 °C and amine 66 (4.16 mmol) was added. After stirring for 18 h at room temperature, the reaction mixture was diluted with CH₂Cl₂ (5 mL), washed with water (3 × 10 mL), dried over Na₂SO₄, and filtered. The filtrate was purified by silica-gel column chromatography (50% EtOAc in hexanes) to afford the tertiary amines.

tert-Butyl 4-({5-[4-(4-Tosylpiperazin-1-yl)quinazolin-2-yl] thiophen-2-yl}methyl)piperazine-1-carboxylate (67). Yield 11%, 15 mg. ¹H NMR (400 MHz, CDCl₃) δ 7.88–7.85 (m, 2H), 7.73– 7.67 (m, 4H), 7.38–7.34 (m, 3H), 6.96 (d, J = 2.8 Hz, 1H) 3.90 (t, J = 4.4 Hz, 4H), 3.48 (br s, 4H), 3.25 (t, J = 4.4 Hz, 4H), 2.50 (br s, 4H), 2.43 (s, 3H), 1.46 (s, 9H). MS (ESI) m/z 649 [C₃₃H₄₀N₄S₂]⁺.

4-((5-(4-(4-Tosylpiperazin-1-yl)quinazolin-2-yl)thiophen-2-yl)methyl)morpholine (68). Yield 19%, 45 mg. ¹H NMR (400 MHz, CDCl₃) δ 7.88–7.84 (m, 2H), 7.73–7.67 (m, 4H), 7.38–7.34 (m, 3H), 6.96 (d, J = 3.6 Hz, 1H), 3.89 (t, J = 4.8 Hz, 4H), 3.75–3.74 (m, 6H), 3.25 (t, J = 4.8 Hz, 4H), 2.55 (br s, 4H), 2.43 (s, 3H). MS (ESI) m/z 550 [C₂₈H₃₁N₅O₃S₂]⁺.

Preparation of 2-[5-(Piperazin-1-ylmethyl)thiophen-2-yl]-4-(4tosylpiperazin-1-yl)quinazoline (69). A 20% hydrochloric acid solution in 1,4-dioxane (0.1 mL) was added to a stirring solution of carbamate 67 (45 mg, 0.06 mmol) in CH₂Cl₂ (2 mL) at 0 °C. After stirring for 2 h at room temperature, the reaction mixture was diluted with water and the aqueous layer was washed with CH_2Cl_2 (2 × 5 mL). The aqueous layer was basified with a saturated aqueous NaHCO₃ solution to pH 12 and extracted with CH_2Cl_2 (2 × 5 mL). The combined organic layer was dried over Na₂SO₄ and filtered. The filtrate was concentrated under reduced pressure to afford secondary amine 69 (25 mg, 66%) as an off-white solid. ¹H NMR (400 MHz, CDCl₃) δ 7.87–7.84 (m, 2H), 7.73-7.68 (m, 4H), 7.37-7.34 (m, 3H), 6.95 (d, J = 3.6 Hz, 1H), 3.89–3.88 (m, 4H), 3.74 (s, 2H), 3.25 (br s, 4H), 2.94 (t, J = 4.8 Hz, 4H), 2.53 (br s, 4H), 2.43 (s, 3H). MS (ESI) m/z 549 $[C_{28}H_{32}N_6O_2S_2 + H]^+$

5.2. Biology. 5.2.1. Biological Experiments. The recombinant wild-type enzyme, Cerezyme, was obtained from Genzyme Corporation (Cambridge, MA). N370S recombinant glucocerebrosidase was a gift from Dr. Tim Edmunds at Genzyme. Patients' spleens were obtained from splenectomies with informed consent under an NIH–IRB approved clinical protocol. Control spleens were obtained under an NIH protocol. 4-Methylumbelliferyl- β -D-glucopyranoside (4MU- β -glc), a blue fluorogenic substrate, resorufin β -D-glucopyranoside (res- β -glc), a red fluorogenic substrate, sodium taurocholate, and the buffer

components were purchased from Sigma-Aldrich (St. Louis, MO). Isofagomine and *N*-nonyl-deoxynojirimycin (NN-DNJ) were purchased from Toronto Research Biochemicals (Ontario, Canada).

The human spleen tissue was homogenized using a food blender at the maximal speed for 5 min, followed by 10 passes in a motordriven 50 mL glass-Teflon homogenizer. The homogenate was centrifuged at 1000g for 10 min. The supernatant was then filtered using a 40 μ m filter, and aliquots of resultant spleen homogenate were frozen at -80 °C until use.

The assay buffer was composed of 50 mM citric acid (titrated with K_2PO_4 to make different pH solutions) and 0.01% Tween-20. The spleen homogenate assays used buffer at pH 5, assays with recombinant wild-type enzyme used buffer at pH 5.9, and assays with recombinant N370S/N370S enzyme used buffer at pH 7. The buffer was stored at 4 °C for up to 6 months. A solution of 1 M NaOH, 1 M glycine at pH 10 was used as the stop solution for the blue substrate assay. One M TRIS-HCl at pH 8.0 was used as the stop solution for the red substrate assay.

5.2.2. Enzyme Assay in 1536-Well Plate Format. In black 1536-well plates, a BioRAPTR FRD Microfluidic workstation (Beckman Coulter, Inc. Fullerton, CA) was used to dispense $2\,\mu$ L of the enzyme solutions into 1536-well plates, and an automated pin-tool station (Kalypsys, San Diego, CA) was used to transfer 23 nL/well of compound to the assay plate. After 5 min of incubation at room temperature, the enzyme reaction was initiated by the addition of 2 μ L/well substrate. After 45 min incubation at 37 °C, the reaction was terminated by the addition of 2 μ L/well stop solution. The fluorescence was then measured in the Viewlux, a CCD-based plate reader (Perkin-Elmer, Waltham, MA), with a 365 nm excitation and 440 nm emission for the blue substrate and 573 nm excitation and 610 nm emission for the red substrate. Then $27 \,\mu g/well$ of spleen homogenate was used as the enzyme solution. The final concentrations of the blue substrate and red substrate were 1 mM and 15 μ M, respectively.

5.2.3. Thermodenaturation Experiment. This assay measures the change in the melting temperature of the recombinant wildtype GC in the presence of different concentrations of the inhibitors. A mixture of wtGC and SYPRO Orange (5000 \times stock concentration, Invitrogen, Carlsbad, CA) was added to a 96-well skirted thin-wall PCR plate (Bio-Rad, Hercules, CA) with a final concentration of $2 \mu M$ and $5 \times$, respectively. wtGC and SYPRO Orange were diluted in 150 mM phosphate/citrate buffer at pH 4.8. A 12-point DMSO dilution series was made separately in a 96-well polypropylene plate (Thermo Fisher Scientific, Hudson, NH) for all analogues, whose final concentrations ranged from 0.1 to 600 µM (400 µM for NCGC00182292-02). One μ L of each dilution point of each compound was transferred to the aforementioned wtGC-SYPRO Orange mixture, with a final DMSO concentration of 2% (1 μ L in 50 μ L final volume). DMSO alone was also transferred to the PCR plate for each dilution series as a control sample. The plate was immediately centrifuged at 1000 rpm for 10 s and subsequently sealed with Optical-Quality Sealing Tape (Bio-Rad). The plate was then heated using an iQ5 real-time PCR detection system (Bio-Rad) from 20 to 95 °C with an increment of 1 °C and a ramping rate of 0.1 °C/s. SYPRO Orange fluorescence was monitored by a CCD camera using excitation and emission wavelengths of 490 and 575 nm, respectively. Protein melting temperature (T_m) was obtained through an EXCEL-based DSF worksheet (provided by Structure Genomics Consortium, ftp://ftp.sgc. ox.ac.uk/pub/biophysics, [Niesen, 2007 no. 1]) and GraphPad Prism 4 (GraphPad Software, Inc., La Jolla, CA). The T_m of wtGC was found to follow a logarithmic dose-dependent trend when denaturation was performed in the presence of isofagomine or selected compounds.

5.2.4. LC-MS Hydrolysis Experiment. This assay uses liquid chromatography linked to a mass spectrometer to assess the ability of glucocerebrosidase in the spleen homogenate to cleave

its natural substrate (glucosylceramide). The substrate has a fluorescent tag, which allows the cleavage to be measured, however, is not believed to have a role in the enzymatic reaction. This assay most closely reflects the physiological condition in the body.

Chromatography was performed using an Agilent HPLC. The Agilent 1200 LC was equipped with a quaternary pump, a G1315 diode array detector, and a G1321 fluorescent detector. A 4.6 mm \times 250 mm Agilent Eclipse Plus C18 (5 μ m) at ambient temperature was used at a flow rate of 1.8 mL/min with a gradient of 85/15 (methanol/0.1% formic acid in water) to 100% methanol over 10 min. Compounds were monitored using fluorescence detection with an excitation wavelength of 505 nm and emission wavelength at 540 nm. We verified that the mass of the fluorescent peaks matched with the expected ones for the substrate and product of the reaction.

5.2.5. Immunocytochemistry and Laser Scanning Confocal Microscopy. Primary dermal fibroblasts derived from skin biopsies from two previously described N370S/N370S Gaucher patients³⁹ and a control were seeded in Lab-Tek 4 chamber slides (Fisher Scientific, Pittsburgh, PA). After compound treatment, fibroblasts were fixed in 3% paraformaldehyde. The cells were permeabelized with 0.1% Triton-X for 10 min and blocked in PBS containing 0.1% saponin, 100 µM glycine, 0.1% BSA, and 2% donkey serum followed by incubation with mouse monoclonal anti-LAMP1 or LAMP-2 (1:100, Developmental Studies Hybridoma bank, University of Iowa, Iowa City, IA) and the rabbit polyclonal anti-GCase R386 antibody (1:500). The cells were washed and incubated with secondary donkey antimouse or antirabbit antibodies conjugated to ALEXA-488 or ALEXA-555, respectively (Invitrogen, Carlsbad, CA), washed again, and mounted in VectaShield with DAPI (Vector Laboratories, Burlingame, CA).

Cells were imaged with a Zeiss 510 META confocal laserscanning microscope (Carl Zeiss, Microimaging Inc., Germany) using an argon (458, 477, 488, 514 nm) 30 mW laser, a HeNe (543 nm) 1 mW laser, and a laser diode (405 nm). Low and high magnification images were acquired using a Plan-Apochromat $20 \times /$ 0.75 objective and a Plan-Apochromat $100 \times /1.4$ oil DIC objective, respectively. Images were taken with the same laser settings, and all the images shown are collapsed *z*-stacks.

Acknowledgment. This research was supported by the Molecular Libraries Initiative of the NIH Roadmap for Medical Research and the Intramural Research Program of the National Human Genome Research Institute, National Institutes of Health.

Supporting Information Available: The data from the primary screening as well as all the inhibitory curves of every final compound in all the described assays are available on line (PubChem AID's: 2101, 2590, 2592, 2588, 2595, 2597, 2596, 2577, 2578, 2587, 2589). Addional images of our translocation experiment with our best inhibitors. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- Grabowski, G. Phenotype, diagnosis, and treatment of Gaucher's disease. *Lancet* 2008, 372 (9645), 1263–1271.
- (2) Sawkar, A. R.; D'Haeze, W.; Kelly, J. W. Therapeutic strategies to ameliorate lysosomal storage disorders—a focus on Gaucher disease. *Cell. Mol. Life Sci.* 2006, *63*, 1179–1192.
- (3) Wedeking, A.; van Echten-Deckert, G. Glycosphingolipid Structure and Function in Membranes. *Curr. Org. Chem.* 2007, 11 (7), 579–589.
- (4) Hruska, K. S.; LaMarca, M. E.; Sidransky, E. In *Gaucher Disease*; Futerman, A. H., Zimran, A., Eds.; CRC Press: Boca Raton, FL, 2006; p 13.
- (5) Futerman, A. H.; van Meer, G. The Cell Biology of Lysosomal Storage Disorders. *Nature Rev. Mol. Cell. Biol.* 2004, 5, 554–565.
- (6) Barton, N. W.; Brady, R. O.; Dambrosia, J. M.; Dibisceglie, A. M.; Doppelt, S. H.; Hill, S. C.; Mankin, H. J.; Murray, G. J.; Parker,

R. I.; Argoff, C. E..; et al. Replacement therapy for inherited enzyme deficiency—macrophage-targeted glucocerebrosidase for Gaucher's disease. *N. Engl. J. Med.* **1991**, *324*, 1464–1470.

- (7) Butters, T. D. Pharmacotherapeutic strategies using small molecules for the treatment of glycolipid lysosomal storage disorders. *Expert Opin. Pharmacother.* 2007, *8*, 427–435.
- (8) Sawker, A. R.; Cheng, W.-C.; Beutler, W.; Wong, C.-H.; Balch, W. E.; Kelly, J. W. Chemical chaperones increase the cellular activity of N370S β-glucosidase: a therapeutic strategy for Gaucher disease. *Proc. Natl. Acad. Sci. U.S.A.* **2002**, *99*, 15428–15433.
- (9) Sawker, A. R.; Adamski-Werner, S. L.; Cheng, W.-C.; Wong, C.-H.; Beutler, E.; Zimmer, K.-P.; Kelly, J. W. Gaucher Disease-Associated Glucocerebrosidases Show Mutation-Dependent Chemical Chaperoning Profiles. *Chem. Biol.* 2005, *12*, 1235–1244.
- (10) Yu, Z.; Sawker, A. R.; Whalen, L. J.; Wong, C.-H.; Kelly, J. W. Isofagomine- and 2,5-Anhydro-2,5-imino-D-glucitol-Based Glucocerebrosidase Pharmacological Chaperones for Gaucher Disease Intervention. J. Med. Chem. 2007, 50 (10), 94–100.
- (11) Wennekes, T.; van der Berg, R. J. B. H. N.; Donker, W.; van der Marel, G. A.; Strijland, A.; Aerts, J. M. F. G.; Overkleeft, H. S. Development of Adamantan-1-yl-methoxy-Functionalized 1-Deoxynojirimycin Derivatives as Selective Inhibitors of Glucosylceramide Metabolism in Man. J. Org. Chem. 2007, 72 (4), 1088–1097.
- (12) Zhu, X.; Sheth, K. A.; Li, S.; Chang, H.-H.; Fan, J.-Q. Rational Design and Synthesis of Highly Potent Glucocerebrosidase Inhibitors. *Angew. Chem., Int. Ed.* 2005, *44* (45), 7450–7453.
 (13) Butters, T. D.; Dwek, R. A.; Platt, F. M. Imino sugar inhibitors for
- (13) Butters, T. D.; Dwek, R. A.; Platt, F. M. Imino sugar inhibitors for treating the lysosomal glycosphingolipidoses. *Glycobiology* 2005, 15, 43R–52R.
- (14) Chang, H. H.; Asano, N.; Ishii, S.; Ichikawa, Y.; Fan, J. Q. Hydrophilic iminosugar active-site-specific chaperones increase residual glucocerebrosidase activity in fibroblasts from Gaucher patients. *FEBS J* 2006, *273* (17), 4082–4092.
- (15) Compain, P.; Martin, O. R.; Boucheron, C.; Godin, G.; Yu, L.; Ikeda, K.; Asano, N. Design and Synthesis of Highly Potent and Selective Pharmacological Chaperones for the Treatment of Gaucher's disease. *ChemBioChem* **2006**, 7 (9), 1356–1359.
- (16) Sawkar, A. R.; Schmitz, M.; Zimmer, K. P.; Reczek, D.; Edmunds, T.; Balch, W. E.; Kelly, J. W. Chemical Chaperones and Permissive Temperatures Alter the Cellular Localization of Gaucher Disease Associated Glucocerebrosidase Variants. ACS Chem. Biol. 2006, 1 (4), 235–251.
- (17) Steet, R. A.; Chung, S.; Wustman, B.; Powe, A.; Do, H.; Kornfeld, S. A. The iminosugar isofagomine increases the activity of N370S mutant acid β-glucosidase in Gaucher fibroblasts by several mechanisms. *Proc. Natl. Acad. Sci. U.S.A.* **2006**, *103*, 13813–13818.
- (18) Yu, L.; Ikeda, K.; Kato, A.; Adachi, I.; Godin, G.; Compain, P; Martin, O.; Asano, N. α-1-C-Octyl-1-deoxynojirimycin as a pharmacological chaperone for Gaucher disease. *Bioorg. Med. Chem.* **2006**, *14* (23), 7736–7744.
- (19) Egido-Gabas, M.; Canals, D.; Casas, J.; Llebaria, A.; Delgado, A. Aminocyclitols as Pharmacological Chaperones for Glucocerebrosidase, a Defective Enzyme in Gaucher Disease. *ChemMedChem* **2007**, *2* (7), 992–994.
- (20) Lei, K.; Ninomiya, H.; Suzuki, M.; Inoue, T.; Sawa, M.; Iida, M.; Ida, H.; Eto, Y.; Ogawa, S.; Ohno, K.; Suzuki, Y. Enzyme enhancement activity of *N*-octyl-beta-valienamine on beta-glucosidase mutants associated with Gaucher disease. *Biochim. Biophys. Acta* 2007, 1772 (5), 587–596.
- (21) Lukina, E.; Watman, N.; Avila Arreguin, E.; Dragosky, M.; Iastrebner, M.; Rosenbaum, H.; Phillips, M.; Pastores, G. M.; Kamath, R. S.; Rosenthal, D. I.; Kaper, M.; Singh, T.; Puga, A. C.; Peterschmitt, M. J. Improvement in hematological, visceral, and skeletal manifestations of Gaucher disease type 1 with oral eliglustat tartrate (Genz-112638) treatment: two-year results of a Phase 2 study. *Blood* 2010, *116*, 4095–4098.
- (22) Steet, R. A.; Chung, S; Wustman, B; Powe, A; Do, H; Kornfeld, S. A. The iminosugar isofagomine increases the activity of N370S mutant acid beta-glucosidase in Gaucher fibroblasts by several mechanisms. *Proc. Natl. Acad. Sci. U.S.A.* 2006, *103* (37), 13813– 13818.
- (23) Fan, J. Q. A contradictory treatment for lysosomal storage disorders: inhibitors enhance mutant enzyme activity. *Trends Pharmacol. Sci.* 2003, 24 (7), 355–360.
- (24) Brandon Wustman (Amicus therapeutics) Personal communication.
- (25) John, M.; Wendeler, M.; Heller, M.; Sandhoff, K.; Kessler, H. Characterization of Human Saposins by NMR Spectroscopy. *Biochemistry* 2006, 45 (16), 5206–5216.
- (26) Zheng, W.; Padia, J.; Urban, D. J.; Jadhav, A.; Goker-Alpan, O.; Simeonov, A.; Goldin, E.; Auld, D.; LaMarca, M. E.; Inglese, J.; Austin, C. P.; Sidransky, E. Three classes of glucocerebrosidase inhibitors identified by quantitative high-throughput screening are

chaperone leads for Gaucher disease. *Proc. Natl. Acad. Sci. U.S.A.* 2007, *104*, 13192.

- (27) We evaluated several tissues, finding that the spleen has one of the highest levels of GC activity.
- (28) Inglese, J.; Auld, D. S.; Jadhav, A.; Johnson, R. L.; Simeonov, A.; Yasgar, A.; Zheng, W.; Austin, C. P. Quantitative high-throughput screening: a titration-based approach that efficiently identifies biological activities in large chemical libraries. *Proc. Natl. Acad. Sci. U.S.A.* **2006**, *103* (31), 11473–11478.
- (29) Schmitz, M.; Alfalah, M.; Aerts, J. M.; Naim, H. Y.; Zimmer, K. P. Impaired trafficking of mutants of lysosomal glucocerebrosidase in Gaucher's disease. *Int. J. Biochem. Cell Biol.* **2005**, *37* (11), 2310–2320.
- (30) Lieberman, R. L.; Wustman, B. A.; Huertas, P.; Powe, A. C., Jr.; Pine, C. W.; Khanna, R.; Schlossmacher, M. G.; Ringe, D.; Petsko, G. A. Structure of acid -glucosidase with pharmacological chaperone provides insight into Gaucher disease. *Nature Chem. Biol.* 2007, *3* (2), 101–107.
- (31) Wéber, C.; Bielik, A.; Demeter, A.; Borza, I.; Szendrei, G. I.; Keseru, G. M.; Greiner, I. Solid-phase synthesis of 6-hydroxy-2,4-diaminoquinazolines. *Tetrahedron* 2005, 61, 9375–9380.
- (32) Currently, we are optimizing this activatory series and it will be the scope of a further manuscript.
- (33) Marugan, J. J.; Zheng, W.; Motabar, O.; Southall, N.; Goldin, E.; Sidransky, E.; Aungst, R. A.; Liu, K.; Sadhukhan, S. K.; Austin, C. P. Evaluation of 2-thioxo-2,3,5,6,7,8-hexahydropyrimido[4,5-d]-

pyrimidin-4(1*H*)-one analogues as GAA activators. *Eur. J. Med. Chem.* **2010**, *45* (5), 1880–1897.

- (34) Hayashi, Y.; Zama, K.; Abe, E.; Okino, N.; Inoue, T.; Ohno, K.; Ito, M. A sensitive and reproducible fluorescent-based HPLC assay to measure the activity of acid as well as neutral b-glucocerebrosidases. *Anal. Biochem.* 2008, *383* (1), 122–129.
 (35) Burns, J. N.; Orwig, S. D.; Harris, J. L.; Watkins, J. D.; Vollrath,
- (35) Burns, J. N.; Orwig, S. D.; Harris, J. L.; Watkins, J. D.; Vollrath, D.; Lieberman, R. L. Rescue of Glaucoma-Causing Mutant Myocilin Thermal Stability by Chemical Chaperones. *ACS Chem. Biol.* 2010, 5 (5), 477–487.
- (36) Matulis, D.; Kranz, J. K.; Salemme, F. R.; Todd, M. J. Thermodynamic Stability of Carbonic Anhydrase: Measurements of Binding Affinity and Stoichiometry Using ThermoFluor. *Biochemistry* 2005, 44 (13), 5258–5266.
- (37) A new manuscript describing the HTS done in tissue homogenate is in progress; however, the results from this screening campaign are public in PubChem (AID no.: 2101).
- (38) Omid Motabar, Ehud Goldin, William Leister, Ke Liu, Noel Southall, Wenwei Huang, Juan J. Marugan, Ellen Sidransky and Wei Zheng Comparison of Different Substrates in Glucocerebrosidase Enzyme Assays. Manuscript in preparation, 2011.
- (39) Goker-Alpan, O.; Wiggs, E. A.; Eblan, M. J.; Benko, W.; Ziegler, S. G.; Sidransky, E.; Schiffmann, R. Cognitive outcome in treated patients with chronic neuronopathic Gaucher disease. *Journal of Pediatrics* 2008, 153 (1), 89–94.